发电技术 ›› 2026, Vol. 47 ›› Issue (1): 99-110.DOI: 10.12096/j.2096-4528.pgt.260109
张萍1, 邸宏亮1, 胡龙1, 薛延刚2, 刘海涛1
收稿日期:2025-01-07
修回日期:2025-03-19
出版日期:2026-02-28
发布日期:2026-02-12
通讯作者:
邸宏亮
作者简介:基金资助:Ping ZHANG1, Hongliang DI1, Long HU1, Yangang XUE2, Haitao LIU1
Received:2025-01-07
Revised:2025-03-19
Published:2026-02-28
Online:2026-02-12
Contact:
Hongliang DI
Supported by:摘要:
目的 针对电池储能辅助火电调频存在难以应对高幅、高频扰动的问题,提出一种基于分层自适应控制的混合储能参与二次调频控制策略。 方法 外层讨论系统剩余能量与比例因子之间的关系,提出基于数学函数方法的比例因子自适应控制策略,在系统当前调频能力的基础上合理分配区域控制信号;同时对内层机组与储能出力进行优化控制,使用变模糊PI控制机组出力,使用变时间常数低阶滤波的双层模糊控制储能出力,在保证储能不过充、过放的前提下,对调频信号进行自适应分配;并使用连续负荷扰动进行仿真分析。 结果 所提比例因子自适应控制策略相比传统定
中图分类号:
张萍, 邸宏亮, 胡龙, 薛延刚, 刘海涛. 基于分层自适应控制的混合储能参与二次调频控制策略[J]. 发电技术, 2026, 47(1): 99-110.
Ping ZHANG, Hongliang DI, Long HU, Yangang XUE, Haitao LIU. Hybrid Energy Storage Participation in Secondary Frequency Regulation Control Strategy Based on Hierarchical Adaptive Control[J]. Power Generation Technology, 2026, 47(1): 99-110.
| ec | e | ||||||
|---|---|---|---|---|---|---|---|
| NB | NM | NS | ZO | PS | PM | PB | |
| NB | PB | PB | PM | PM | PS | PS | ZO |
| NM | PB | PB | PM | PS | PS | ZO | NS |
| NS | PM | PM | PM | PS | ZO | NS | NS |
| ZO | PM | PM | PS | ZO | NS | NM | NM |
| PS | PS | PS | ZO | NS | NS | NM | NM |
| PM | PS | PS | NS | NM | NM | NM | NB |
| PB | ZO | NS | NM | NM | NM | NB | MN |
表1 比例参量ΔKp的模糊规则
Tab. 1 Fuzzy rules of proportional parameter ΔKp
| ec | e | ||||||
|---|---|---|---|---|---|---|---|
| NB | NM | NS | ZO | PS | PM | PB | |
| NB | PB | PB | PM | PM | PS | PS | ZO |
| NM | PB | PB | PM | PS | PS | ZO | NS |
| NS | PM | PM | PM | PS | ZO | NS | NS |
| ZO | PM | PM | PS | ZO | NS | NM | NM |
| PS | PS | PS | ZO | NS | NS | NM | NM |
| PM | PS | PS | NS | NM | NM | NM | NB |
| PB | ZO | NS | NM | NM | NM | NB | MN |
| ec | e | ||||||
|---|---|---|---|---|---|---|---|
| NB | NM | NS | ZO | PS | PM | PB | |
| NB | NB | NB | NB | NM | NS | NS | ZO |
| NM | NB | NB | NM | NS | NS | ZO | PS |
| NS | NB | NM | NM | NS | ZO | PS | PS |
| ZO | NM | NM | NS | ZO | PS | PM | PM |
| PS | NM | NS | ZO | PS | PS | PM | PM |
| PM | NS | ZO | PS | PS | PM | PB | PB |
| PB | ZO | PS | PS | PM | PM | PB | PB |
表2 积分参量ΔKi的模糊规则
Tab. 2 Fuzzy rules of integral parameter ΔKi
| ec | e | ||||||
|---|---|---|---|---|---|---|---|
| NB | NM | NS | ZO | PS | PM | PB | |
| NB | NB | NB | NB | NM | NS | NS | ZO |
| NM | NB | NB | NM | NS | NS | ZO | PS |
| NS | NB | NM | NM | NS | ZO | PS | PS |
| ZO | NM | NM | NS | ZO | PS | PM | PM |
| PS | NM | NS | ZO | PS | PS | PM | PM |
| PM | NS | ZO | PS | PS | PM | PB | PB |
| PB | ZO | PS | PS | PM | PM | PB | PB |
| NB | NS | ZO | PS | PB | |
|---|---|---|---|---|---|
| NB | NB | NS | ZO | PS | PB |
| NS | NB | NS | ZO | PS | PB |
| ZO | ZO | ZO | ZO | ZO | ZO |
| PS | PB | PS | ZO | NS | NB |
| PB | PB | PS | ZO | NS | NB |
表3 可变时间常数Ti模糊规则
Tab. 3 Fuzzy rules of variable time constant Ti
| NB | NS | ZO | PS | PB | |
|---|---|---|---|---|---|
| NB | NB | NS | ZO | PS | PB |
| NS | NB | NS | ZO | PS | PB |
| ZO | ZO | ZO | ZO | ZO | ZO |
| PS | PB | PS | ZO | NS | NB |
| PB | PB | PS | ZO | NS | NB |
| NB | NM | NS | ZO | PS | PM | PB | |
|---|---|---|---|---|---|---|---|
| NB | ZO | ZO | NM | NB | NB | NB | NB |
| NM | ZO | NS | NS | NM | NM | NM | NM |
| NS | ZO | NS | NS | NS | NS | NS | NS |
| ZO | ZO | ZO | ZO | ZO | ZO | ZO | ZO |
| PS | PS | PS | PS | PS | PS | PS | ZO |
| PM | PM | PM | PM | PM | PS | PS | ZO |
| PB | PB | PB | PM | PB | PM | PS | ZO |
表4 优化信号Ace,SF的模糊规则
Tab. 4 Fuzzy rules for optimizing signal Ace,SF
| NB | NM | NS | ZO | PS | PM | PB | |
|---|---|---|---|---|---|---|---|
| NB | ZO | ZO | NM | NB | NB | NB | NB |
| NM | ZO | NS | NS | NM | NM | NM | NM |
| NS | ZO | NS | NS | NS | NS | NS | NS |
| ZO | ZO | ZO | ZO | ZO | ZO | ZO | ZO |
| PS | PS | PS | PS | PS | PS | PS | ZO |
| PM | PM | PM | PM | PM | PS | PS | ZO |
| PB | PB | PB | PM | PB | PM | PS | ZO |
| NB | NM | NS | ZO | PS | PM | PB | |
|---|---|---|---|---|---|---|---|
| NB | ZO | ZO | NM | NM | NM | NM | NB |
| NM | ZO | NS | NS | NS | NM | NM | NM |
| NS | ZO | NS | NS | NS | NS | NS | NS |
| ZO | ZO | ZO | ZO | ZO | ZO | ZO | ZO |
| PS | PS | PS | PS | PS | PS | PS | ZO |
| PM | PM | PM | PM | PM | PS | PS | ZO |
| PB | PB | PM | PM | PM | PM | PS | ZO |
表5 优化信号Ace,SB的模糊规则
Tab. 5 Fuzzy rules for optimizing signal Ace,SB
| NB | NM | NS | ZO | PS | PM | PB | |
|---|---|---|---|---|---|---|---|
| NB | ZO | ZO | NM | NM | NM | NM | NB |
| NM | ZO | NS | NS | NS | NM | NM | NM |
| NS | ZO | NS | NS | NS | NS | NS | NS |
| ZO | ZO | ZO | ZO | ZO | ZO | ZO | ZO |
| PS | PS | PS | PS | PS | PS | PS | ZO |
| PM | PM | PM | PM | PM | PS | PS | ZO |
| PB | PB | PM | PM | PM | PM | PS | ZO |
| 参数 | 区域1 | 区域2 | 参数 | 区域1 | 区域2 |
|---|---|---|---|---|---|
| 10 | 10 | 0.01 | |||
| 1 | 1 | 0.03 | |||
| 0.08 | 0.06 | 0.45 | |||
| 0.3 | 0.3 | 0.55 | |||
| 10 | 10 | -0.822 | |||
| 0.5 | 0.5 | -0.16 | |||
| 20 | 20 | 1.59 | 1.59 | ||
| 21 | 21 |
表6 仿真参数
Tab. 6 Simulation parameters
| 参数 | 区域1 | 区域2 | 参数 | 区域1 | 区域2 |
|---|---|---|---|---|---|
| 10 | 10 | 0.01 | |||
| 1 | 1 | 0.03 | |||
| 0.08 | 0.06 | 0.45 | |||
| 0.3 | 0.3 | 0.55 | |||
| 10 | 10 | -0.822 | |||
| 0.5 | 0.5 | -0.16 | |||
| 20 | 20 | 1.59 | 1.59 | ||
| 21 | 21 |
| 方案 | ||||
|---|---|---|---|---|
| 本文策略 | 0.004 4 | 0.001 6 | -2.448 2 | 0.573 6 |
| 方案1 | 0.004 5 | 0.001 6 | -3.583 1 | 0.570 1 |
| 方案2 | 0.004 5 | 0.001 6 | -4.756 0 | 0.567 3 |
表7 连续扰动负荷下不同策略的评价指标
Tab. 7 Evaluation indicators of different strategies under continuous disturbance load
| 方案 | ||||
|---|---|---|---|---|
| 本文策略 | 0.004 4 | 0.001 6 | -2.448 2 | 0.573 6 |
| 方案1 | 0.004 5 | 0.001 6 | -3.583 1 | 0.570 1 |
| 方案2 | 0.004 5 | 0.001 6 | -4.756 0 | 0.567 3 |
| 方案 | ||||
|---|---|---|---|---|
| 变模糊PI | 0.004 4 | 0.001 6 | 7.608 9 | 0.018 5 |
| PI | 0.004 5 | 0.001 6 | 12.291 2 | 0.019 5 |
表8 连续扰动负荷下不同控制器的评价指标
Tab. 8 Evaluation indicators of different controllers under continuous disturbance load
| 方案 | ||||
|---|---|---|---|---|
| 变模糊PI | 0.004 4 | 0.001 6 | 7.608 9 | 0.018 5 |
| PI | 0.004 5 | 0.001 6 | 12.291 2 | 0.019 5 |
| 方案 | ||||||
|---|---|---|---|---|---|---|
| 本文策略 | 0.004 4 | 0.001 6 | 5.836 5 | 0.448 6 | -3.489 9 | 0.706 4 |
| 方案1 | 0.004 4 | 0.001 6 | 6.115 9 | 0.454 8 | -1.707 5 | 0.668 2 |
| 方案2 | 0.005 3 | 0.001 8 | 0.774 7 | 0.495 0 | 0.459 1 | 0.598 2 |
表9 连续扰动负荷下不同控制方式的评价指标
Tab. 9 Evaluation indicators of different control methods under continuous disturbance load
| 方案 | ||||||
|---|---|---|---|---|---|---|
| 本文策略 | 0.004 4 | 0.001 6 | 5.836 5 | 0.448 6 | -3.489 9 | 0.706 4 |
| 方案1 | 0.004 4 | 0.001 6 | 6.115 9 | 0.454 8 | -1.707 5 | 0.668 2 |
| 方案2 | 0.005 3 | 0.001 8 | 0.774 7 | 0.495 0 | 0.459 1 | 0.598 2 |
| [1] | 李国庆,刘先超,辛业春,等 .含高比例新能源的电力系统频率稳定研究综述[J].高电压技术,2024,50(3):1165-1181. |
| LI G Q, LIU X C, XIN Y C,et al .Research on frequency stability of power system with high penetration renewable energy:a review[J].High Voltage Engineering,2024,50(3):1165-1181. | |
| [2] | 郝玲,陈磊,黄怡涵,等 .新型电力系统下燃煤火电机组一次调频面临的挑战与展望[J].电力系统自动化,2024,48(8):14-29. |
| HAO L, CHEN L, HUANG Y H,et al .Challenges and prospects of primary frequency regulation of coal-fired thermal power units for new power system[J].Automation of Electric Power Systems,2024,48(8):14-29. | |
| [3] | 江守其,张海峰,付贵,等 .提升光储并网系统频率稳定性的协调控制策略[J].电力建设,2025,46(8):138-149. |
| JIANG S Q, ZHANG H F, FU G,et al .Coordinated control strategies for enhancing frequency stability of photovoltaic and storage networking systems[J].Electric Power Construction,2025,46(8):138-149. | |
| [4] | 张俊,蒲天骄,高文忠,等 .电力系统智能计算的关键技术及应用展望[J].发电技术,2025,46(3):421-437. |
| ZHANG J, PU T J, GAO W Z,et al .Key technologies and application prospects of intelligent computing in power systems[J].Power Generation Technology,2025,46(3):421-437. | |
| [5] | 徐鹏,郭新元,赵伟,等 .功率与频率耦合下100%新能源电力系统的潮流分析模型[J].智慧电力,2024,52(12):73-79. |
| XU P, GUO X Y, ZHAO W,et al .Power flow analysis model of power system with 100% renewable energy under power-frequency coupling[J].Smart Power,2024,52(12):73-79. | |
| [6] | 沈赋,曹旸,徐潇源,等 .高比例可再生能源电力系统惯量预测方法研究综述[J].电力建设,2025,46(8):116-128. |
| SHEN F, CAO Y, XU X Y,et al .A review of inertia prediction methods for power system with high penetration renewable energy sources[J].Electric Power Construction,2025,46(8):116-128. | |
| [7] | 刘海涛,朱康凯,王宇昊,等 .考虑“源-荷”双侧调频的电力系统双层优化调度模型[J].电测与仪表,2025,62(11):154-166. |
| LIU H T, ZHU K K, WANG Y H,et al .Bi-level unit commitment optimized dispatching model of power system with ‘source-load’ bilateral frequency regulation[J].Electrical Measurement & Instrumentation,2025,62(11):154-166. | |
| [8] | 董武,张健,周勤勇,等 .中国电力系统安全稳定性演化综述[J].中国电力,2025,58(1):115-127. |
| DONG W, ZHANG J, ZHOU Q Y,et al .An overview of the evolution of security and stability of China’s power system[J].Electric Power,2025,58(1):115-127. | |
| [9] | 何鑫,刘翠,李芸 .不同运行方式的大规模新能源接入电网后的调频特性研究[J].电力科学与技术学报,2024,39(3):168-176. |
| HE X, LIU C, LI Y .Study on frequency regulation characteristics of power grids after large-scale new energy integration under different operation modes[J].Journal of Electric Power Science and Technology,2024,39(3):168-176. | |
| [10] | 梅勇,高永强,李成翔,等 .计及新能源接入的孤网运行全过程动态仿真研究[J].广东电力,2024,37(1):68-75. |
| MEI Y, GAO Y Q, LI C X,et al .Dynamic simulation study of the whole process of isolated network operation considering new energy connection[J].Guangdong Electric Power,2024,37(1):68-75. | |
| [11] | 王士博,孔令国,蔡国伟,等 .电力系统氢储能关键应用技术现状、挑战及展望[J].中国电机工程学报,2023,43(17):6660-6681. |
| WANG S B, KONG L G, CAI G W,et al .Current status,challenges and prospects of key application technologies for hydrogen storage in power system[J].Proceedings of the CSEE,2023,43(17):6660-6681. | |
| [12] | 王放放,杨鹏威,赵光金,等 .新型电力系统下火电机组灵活性运行技术发展及挑战[J].发电技术,2024,45(2):189-198. |
| WANG F F, YANG P W, ZHAO G J,et al .Development and challenge of flexible operation technology of thermal power units under new power system[J].Power Generation Technology,2024,45(2):189-198. | |
| [13] | 杨水丽,李建林,李蓓,等 .电池储能系统参与电网调频的优势分析[J].电网与清洁能源,2013,29(2):43-47. |
| YANG S L, LI J L, LI B,et al .Advantages of battery energy storage system for frequency regulation[J].Power System and Clean Energy,2013,29(2):43-47. | |
| [14] | 陈海生,李泓,马文涛,等 .2021年中国储能技术研究进展[J].储能科学与技术,2022,11(3):1052-1076. |
| CHEN H S, LI H, MA W T,et al .Research progress of energy storage technology in China in 2021[J].Energy Storage Science and Technology,2022,11(3):1052-1076. | |
| [15] | 邓霞,孙威,肖海伟 .储能电池参与一次调频的综合控制方法[J].高电压技术,2018,44(4):1157-1165. |
| DENG X, SUN W, XIAO H W .Integrated control strategy of battery energy storage system in primary frequency regulation[J].High Voltage Engineering,2018,44(4):1157-1165. | |
| [16] | SOFIA GUZMAN E N, ARRIAGA M, CAÑIZARES C A,et al .Regulation signal design and fast frequency control with energy storage systems[J].IEEE Transactions on Power Systems,37(1):224-236. doi:10.1109/tpwrs.2021.3086075 |
| [17] | 吴启帆,宋新立,张静冉,等 .电池储能参与电网一次调频的自适应综合控制策略研究[J].电网技术,2020,44(10):3829-3836. |
| WU Q F, SONG X L, ZHANG J R,et al .Study on self-adaptation comprehensive strategy of battery energy storage in primary frequency regulation of power grid[J].Power System Technology,2020,44(10):3829-3836. | |
| [18] | PAN X, XU H, SONG J,et al .Capacity optimization of battery energy storage systems for frequency regulation[C]//2015 IEEE International Conference on Automation Science and Engineering (CASE).Gothenburg,Sweden:IEEE,2015:1139-1144. doi:10.1109/coase.2015.7294251 |
| [19] | TAN Y, MUTTAQI K M, CIUFO P,et al .Enhanced frequency regulation using multilevel energy storage in remote area power supply systems[J].IEEE Transactions on Power Systems,2018,34(1):163-170. doi:10.1109/tpwrs.2018.2867190 |
| [20] | 韩健民,薛飞宇,梁双印,等 .模糊控制优化下的混合储能系统辅助燃煤机组调频仿真[J].储能科学与技术,2022,11(7):2188-2196. |
| HAN J M, XUE F Y, LIANG S Y,et al .Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization[J].Energy Storage Science and Technology,2022,11(7):2188-2196. | |
| [21] | 郭强,陈崇德,胡阳,等 .飞轮和锂电池储能联合光伏发电一次调频控制[J].电力系统及其自动化学报,2023,35(11):1-9. |
| GUO Q, CHEN C D, HU Y,et al .Flywheel and lithium battery energy storage combined with photovoltaic power generation participating in primary frequency regulation control[J].Proceedings of the CSU-EPSA,2023,35(11):1-9. | |
| [22] | 孟德方,蔚伟,钱玉良 .基于调频需求分配的混合储能调频双层控制策略[J].陕西科技大学学报,2023,41(5):161-168. |
| MENG D F, WEI W, QIAN Y L .Dual-layer control strategy for hybrid energy storage frequency regulation based on frequency regulation demand[J].Journal of Shaanxi University of Science and Technology,2023,41(5):161-168. | |
| [23] | 骆钊,高培淇,聂灵峰,等 .风-铝联合系统协同频率控制策略研究[J].电机与控制应用,2023,50(4):49-57. |
| LUO Z, GAO P Q, NIE L F,et al .Research on cooperative frequency control strategy with wind-aluminum combination system[J].Electric Machines & Control Application,2023,50(4):49-57. | |
| [24] | 王椿,贾磊,王国辉,等 .车辆磁流变半主动悬架变论域模糊PID控制[J].现代制造工程,2023(8):59-65. |
| WANG C, JIA L, WANG G H,et al .Variable universe fuzzy PID control for vehicle semi-active suspension with magnetorheological dampers[J].Modern Manufacturing Engineering,2023(8):59-65. |
| [1] | 刘素梅, 徐文成, 孙曦冉, 余非, 胡春鹤. 交直流微电网互联变换器功率协调自抗扰控制策略[J]. 发电技术, 2026, 47(1): 195-203. |
| [2] | 洪烽, 梁博洋, 孙风东, 梁璐, 王玮, 房方. 多运行阶段下飞轮储能耦合火电机组调频控制策略[J]. 发电技术, 2026, 47(1): 89-98. |
| [3] | 张萍, 李永强, 杏华良. 基于变分模态分解的平抑风电波动混合储能容量优化配置[J]. 发电技术, 2025, 46(6): 1144-1153. |
| [4] | 张效伟, 衣振晓, 王凯. 基于改进自适应蜜獾算法优化时间卷积网络的车载锂离子电池健康状态估计[J]. 发电技术, 2025, 46(6): 1154-1163. |
| [5] | 李伟, 王英旭, 王师鹏. 考虑碳交易的火电机组参与电力市场容量分配优化模型研究[J]. 发电技术, 2025, 46(6): 1260-1268. |
| [6] | 卫广宇, 应笑冬, 姚延军, 杨小芳, 翁楚迪, 彭勇刚, 李海龙. 计及荷电状态的并网型直流微电网功率协同控制策略[J]. 发电技术, 2025, 46(4): 788-796. |
| [7] | 张帅柠, 高明明, 王勇权, 王唯铧, 于浩洋, 黄中. 循环流化床锅炉宽负荷一体化脱硫建模研究[J]. 发电技术, 2025, 46(4): 849-856. |
| [8] | 张鹏新, 高明明, 解沛然, 于浩洋, 张洪福, 黄中. 基于数据驱动的循环流化床机组深度调峰NO x 预测[J]. 发电技术, 2025, 46(3): 627-636. |
| [9] | 雷基林, 余林兴, 别玉, 徐稚博, 肖雨寒. 孤岛微电网能量管理系统研究综述[J]. 发电技术, 2025, 46(2): 370-385. |
| [10] | 李航, 郭昆丽, 杨鹏, 吕家君, 任蓓蕾, 曲晨明, 朱婷华, 郝翊帆. 基于改进模糊线性自抗扰的LCL型并网逆变器控制策略[J]. 发电技术, 2025, 46(2): 409-420. |
| [11] | 董建宁, 安吉振, 陈衡, 潘佩媛, 徐钢, 王修彦. 考虑天气影响的火电机组空冷系统性能预测方法[J]. 发电技术, 2024, 45(6): 1105-1113. |
| [12] | 解婷婷, 孙友源, 郭振, 宋明光. 火电机组碳排放连续监测技术研究与应用综述[J]. 发电技术, 2024, 45(5): 919-928. |
| [13] | 郑淇薇, 赵欣悦, 卢荻, 陈衡, 潘佩媛, 刘彤. 多类型小容量火电机组热电解耦潜力与经济性对比评估[J]. 发电技术, 2024, 45(5): 929-940. |
| [14] | 刘旺, 陈连, 龚高阳, 李智华, 薛文华, 石金刚, 谢军, 李雷雷, 姚荣财, 王召鹏, 杨延西, 邓毅, 张晨辉. 基于数字孪生的空气预热器预测性维护模式研究[J]. 发电技术, 2024, 45(4): 622-632. |
| [15] | 杜婉琳, 王玲, 罗威, 朱远哲, 吕鸿, 马潇男, 周霞. 基于深度强化学习的有源配电网电压分层控制策略[J]. 发电技术, 2024, 45(4): 734-743. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||