发电技术 ›› 2024, Vol. 45 ›› Issue (2): 299-311.DOI: 10.12096/j.2096-4528.pgt.23017
付小标1, 侯嘉琪2, 李宝聚1, 温亚坤2, 赖晓文3, 郭雷1, 王志伟1, 王尧1, 张海锋4, 李德鑫4
收稿日期:
2023-02-20
出版日期:
2024-04-30
发布日期:
2024-04-29
通讯作者:
侯嘉琪
作者简介:
基金资助:
Xiaobiao FU1, Jiaqi HOU2, Baoju LI1, Yakun WEN2, Xiaowen LAI3, Lei GUO1, Zhiwei WANG1, Yao WANG1, Haifeng ZHANG4, Dexin LI4
Received:
2023-02-20
Published:
2024-04-30
Online:
2024-04-29
Contact:
Jiaqi HOU
Supported by:
摘要:
天气分型是光伏功率预测中不可或缺的预处理步骤,为精细刻画光伏出力的不确定性,提出一种新的基于光伏功率聚类的二模态天气分类方法。该方法结合气象信息和功率信息进行天气分型,为天气分型在光伏功率预测的应用提供了一条有效的新路径。此外,该方法使用数据融合技术,依据融合数值天气预报(numeric weather prediction,NWP)气象和实际气象二者间的相关信息进行天气分型,以减少模型对NWP准确度的依赖并提高模型的鲁棒性。以吉林某光伏电站数据为例,验证了该天气分型方法的合理性,同时,将天气分型方法与功率概率预测相结合,其测算结果表明,使用所提方法进行天气分型概率预测的区间覆盖率更接近预设的置信水平,且平均带宽更窄。
中图分类号:
付小标, 侯嘉琪, 李宝聚, 温亚坤, 赖晓文, 郭雷, 王志伟, 王尧, 张海锋, 李德鑫. 一种二模态天气分型方法及其在光伏功率概率预测的应用[J]. 发电技术, 2024, 45(2): 299-311.
Xiaobiao FU, Jiaqi HOU, Baoju LI, Yakun WEN, Xiaowen LAI, Lei GUO, Zhiwei WANG, Yao WANG, Haifeng ZHANG, Dexin LI. A Two-Modal Weather Classification Method and Its Application in Photovoltaic Power Probability Prediction[J]. Power Generation Technology, 2024, 45(2): 299-311.
天气类型 | Gaussian Copula | Student Copula | Clayton Copula | Frank Copula | Gumbel Copula |
---|---|---|---|---|---|
第0种 | 3 476.3 | 3 620.8 | 2 560.6 | 3 353.6 | |
第1种 | 11 242.2 | 6 910.7 | 10 402.3 | 11 187.6 | |
第2种 | 5 818.8 | 5 858.9 | 3 410.3 | 6 079.1 |
表1 Copula函数的对数似然值
Tab. 1 Log-likelihood value of the Copula function
天气类型 | Gaussian Copula | Student Copula | Clayton Copula | Frank Copula | Gumbel Copula |
---|---|---|---|---|---|
第0种 | 3 476.3 | 3 620.8 | 2 560.6 | 3 353.6 | |
第1种 | 11 242.2 | 6 910.7 | 10 402.3 | 11 187.6 | |
第2种 | 5 818.8 | 5 858.9 | 3 410.3 | 6 079.1 |
类别 | 80%置信度 | 90%置信度 | 95%置信度 | |||
---|---|---|---|---|---|---|
PICPα | MPIWα | PICPα | MPIWα | PICPα | MPIWα | |
天气分型 | 0.919 9 | 4.91 | 0.959 8 | 6.27 | 0.977 8 | 7.48 |
不进行天气分型 | 0.932 6 | 5.53 | 0.960 7 | 7.07 | 0.975 5 | 8.43 |
表2 不同置信度下天气分型的PICP和MPIW
Tab. 2 PICP and MPIW of weather classification under different confidence levels
类别 | 80%置信度 | 90%置信度 | 95%置信度 | |||
---|---|---|---|---|---|---|
PICPα | MPIWα | PICPα | MPIWα | PICPα | MPIWα | |
天气分型 | 0.919 9 | 4.91 | 0.959 8 | 6.27 | 0.977 8 | 7.48 |
不进行天气分型 | 0.932 6 | 5.53 | 0.960 7 | 7.07 | 0.975 5 | 8.43 |
1 | IEA .World energy outlook 2017[R].Paris:IEA,2017. doi:10.1787/g2659b7a2e-en |
2 | 吴攀 .光伏发电系统发电功率预测[J].发电技术,2020,41(3):231-236. doi:10.12096/j.2096-4528.pgt.19113 |
WU P .Power forecasting of photovoltaic power generation system[J].Power Generation Technology,2020,41(3):231-236. doi:10.12096/j.2096-4528.pgt.19113 | |
3 | 吕清泉,张珍珍,马彦宏,等 .区域光伏发电出力特性分析研究[J].发电技术,2022,43(3):413-420. doi:10.12096/j.2096-4528.pgt.21060 |
LÜ Q Q, ZHANG Z Z, MA Y H,et al .Analysis and research on output characteristics of regional photovoltaic power generation[J].Power Generation Technology,2022,43(3):413-420. doi:10.12096/j.2096-4528.pgt.21060 | |
4 | 张思,杨晓雷,阙凌燕,等 .高比例光伏发电对浙江电网电力平衡的影响及应对策略[J].浙江电力,2022,41(11):9-16. |
ZHANG S, YANG X L, QUE L Y,et al .The impact of high-proportion photovoltaic power generation on the power balance of Zhejiang power grid and its countermeasures[J].Zhejiang Electric Power,2022,41(11):9-16. | |
5 | 刘宇,赵映,李世朝 .光伏发电系统在火力发电厂的应用研究[J].内蒙古电力技术,2022,40(2):36-39. |
LIU Y, ZHAO Y, LI S Z .Research on application of photovoltaic power generation system in thermal power plant[J].Inner Mongolia Electric Power,2022,40(2):36-39. | |
6 | 朱林,韩涛,董颖华,等 .基于时变因素的光伏发电系统可靠性评估[J].中国电力,2023,56(1):158-165. |
ZHU L, HAN T, DONG Y H,et al .Reliability evaluation of photovoltaic system based on time varying factors[J].Electric Power,2023,56(1):158-165. | |
7 | 王鹏翔,沈娟,王菁旸,等 .基于PCA-LMD-WOA-ELM的短期光伏功率预测[J].智慧电力,2022,50(6):72-78. doi:10.3969/j.issn.1673-7598.2022.06.012 |
WANG P X, SHEN J, WANG J Y,et al .Short term photovoltaic power prediction based on PCA-LMD-WOA-ELM[J].Smart Power,2022,50(6):72-78. doi:10.3969/j.issn.1673-7598.2022.06.012 | |
8 | AHMED R, SREERAM V, MISHRA Y,et al .A review and evaluation of the state-of-the-art in PV solar power forecasting:techniques and optimization[J].Renewable and Sustainable Energy Reviews,2020,124:1364-0321. doi:10.1016/j.rser.2020.109792 |
9 | 国家能源局 . 光伏发电站功率预测系统技术要求:NB/T 32011—2013 [S].北京:新华出版社,2014. |
National Energy Bureau of the People’s Republic of China . Technical requirement of power forecasting system for PV power station:NB/T 32011—2013 [S].Beijing:Xinhua Publishing House,2014. | |
10 | 赵唯嘉,张宁,康重庆,等 .光伏发电出力的条件预测误差概率分布估计方法[J].电力系统自动化,2015,39(16):8-15. doi:10.1002/pip.1210 |
ZHAO W J, ZHANG N, KANG C Q,et al .A method of probabilistic distribution estimation of conditional forecast error for photovoltaic power generation[J].Automation of Electric Power Systems,2015,39(16):8-15. doi:10.1002/pip.1210 | |
11 | ISHII T, OTANI K, TAKASHIMA T,et al .Solar spectral influence on the performance of photovoltaic (PV) modules under fine weather and cloudy weather conditions[J].Progress in Photovoltaics:Research and Applications,2013,21(4):481-489. doi:10.1002/pip.1210 |
12 | WANG F, ZHANG Z, LIU C,et al .Generative adversarial networks and convolutional neural networks based weather classification model for day ahead short-term photovoltaic power forecasting[J].Energy Conversion and Management,2019,181:443-462. doi:10.1016/j.enconman.2018.11.074 |
13 | WANG F, ZHEN Z, LIU C,et al .Image phase shift invariance based cloud motion displacement vector calculation method for ultra-short-term solar PV power forecasting[J].Energy Conversion and Management,2018,157:123-135. doi:10.1016/j.enconman.2017.11.080 |
14 | 叶林,裴铭,路朋,等 .基于天气分型的短期光伏功率组合预测方法[J].电力系统自动化,2021,45(1):44-54. doi:10.7500/AEPS20200613003 |
YE L, PEI M, LU P,et al .Combination forecasting method of short-term photovoltaic power based on weather classification[J].Automation of Electric Power Systems,2021,45(1):44-54. doi:10.7500/AEPS20200613003 | |
15 | 刘倩,胡强,杨凌帆,等 .基于时间序列的深度学习光伏发电模型研究[J].电力系统保护与控制,2021,49(19):87-98. doi:10.19783/j.cnki.pspc.201494 |
LIU Q, HU Q, YANG L F,et al .Deep learning photovoltaic power generation model based on time series[J].Power System Protection and Control,2021,49(19):87-98. doi:10.19783/j.cnki.pspc.201494 | |
16 | 陈向群,杨茂涛,刘谋海,等 .基于模糊聚类分析的电能质量扰动模式识别方法[J].电力科学与技术学报,2022,37(2):79-85. |
CHEN X Q, YANG M T, LIU M H,et al .Disturbance pattern recognition method of power quality based on the fuzzy clustering analysis[J].Journal of Electric Power Science and Technology,2022,37(2):79-85. | |
17 | 赵舫,盛青,王新刚,等 .基于主成分分析合作博弈的电网负荷智能预测方法研究[J].电网与清洁能源,2022,38(2):48-52. doi:10.3969/j.issn.1674-3814.2022.02.007 |
ZHAO F, SHENG Q, WANG X G,et al .A study on the intelligent load forecasting method of power grids based on principal component analysis and cooperative game[J].Power System and Clean Energy,2022,38(2):48-52. doi:10.3969/j.issn.1674-3814.2022.02.007 | |
18 | 王勃,冯双磊,刘纯 .基于天气分型的风电功率预测方法[J].电网技术,2014,38(1):93-98. doi:10.13335/j.1000-3673.pst.2014.01.015 |
WANG B, FENG S L, LIU C .Study on weather typing based wind power prediction[J].Power System Technology,2014,38(1):93-98. doi:10.13335/j.1000-3673.pst.2014.01.015 | |
19 | CHEN C, DUAN S, CAI T,et al .Online 24-h solar power forecasting based on weather type classification using artificial neural network[J].Solar Energy,2011,85(11):2856-2870. doi:10.1016/j.solener.2011.08.027 |
20 | 李芬,周尔畅,孙改平,等 .一种新型天气分型方法及其在光伏功率预测中的应用[J].上海交通大学学报,2021,55(12):1510-1519. |
LI F, ZHOU E C, SUN G P,et al .A novel weather classification method and its application in photovoltaic power prediction[J].Journal of Shanghai Jiao Tong University,2021,55(12):1510-1519. | |
21 | AGHABOZORGI S, SEYED SHIRKHORSHIDI A, YING WAH T .Time-series clustering:a decade review[J].Information Systems,2015,53:16-38. doi:10.1016/j.is.2015.04.007 |
22 | BENGIO Y, COURVILLE A, VINCENT P .Representation learning:a review and new perspectives[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(8):1798-1828. doi:10.1109/tpami.2013.50 |
23 | 赵亮 .多模态数据融合算法研究[D].大连:大连理工大学,2018. |
ZHAO L .Research on multimodal data fusion methods[D].Dalian:Dalian University of Technology,2018. | |
24 | 乔延辉,韩爽,许彦平,等 .基于天气分型的风光出力互补性分析方法[J].电力系统自动化,2021,45(2):82-88. doi:10.7500/AEPS20200812006 |
QIAO Y H, HAN S, XU Y P,et al .Analysis method for complementarity between wind and photovoltaic power outputs based on weather classification[J].Automation of Electric Power Systems,2021,45(2):82-88. doi:10.7500/AEPS20200812006 | |
25 | 管霖,赵琦,周保荣,等 .基于多尺度聚类分析的光伏功率特性建模及预测应用[J].电力系统自动化,2018,42(15):24-30. doi:10.7500/AEPS20171027003 |
GUAN L, ZHAO Q, ZHOU B R,et al .Multi-scale clustering analysis based modeling of photovoltaic power characteristics and its application in prediction[J].Automation of Electric Power Systems,2018,42(15):24-30. doi:10.7500/AEPS20171027003 | |
26 | BALTRUSAITIS T, AHUJA C, MORENCY L P .Multimodal machine learning:a survey and taxonomy[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,41(2):423-443. doi:10.1109/tpami.2018.2798607 |
27 | 朱乔木 .基于深度学习的电力系统暂态稳定评估及风电功率预测方法研究[D].武汉:华中科技大学,2019. |
ZHU Q M .Research on power system transient stability assessment and wind power prediction method based on deep learning[D].Wuhan:Huazhong University of Science and Technology,2019. | |
28 | 师浩琪,郭力,刘一欣,等 .基于多源气象预报总辐照度修正的光伏功率短期预测[J].电力自动化设备,2022,42(3):104-112. |
SHI H Q, GUO L, LIU Y X,et al .Short-term forecasting of photovoltaic power based on total irradiance correction of multi-source meteorological forecast[J].Electric Power Automation Equipment,2022,42(3):104-112. | |
29 | 张永蕊,阎洁,林爱美,等 .多点数值天气预报风速和辐照度集中式修正方法研究[J].发电技术,2022,43(2):278-286. doi:10.12096/j.2096-4528.pgt.22005 |
ZHANG Y R, YAN J, LIN A M,et al .Integrated correction method of multi-point numerical weather prediction wind speed and irradiance[J].Power Generation Technology,2022,43(2):278-286. doi:10.12096/j.2096-4528.pgt.22005 | |
30 | COWLEY B R, SEMEDO J D, ZANDVAKILI A,et al .Distance covariance analysis[C]//International Conference on Artificial Intelligence and Statistics, PMLR,2017,54:242-251. |
31 | MATTESON D S, TSAY R S .Independent component analysis via distance covariance[J].Journal of the American Statistical Association,2017,112(518):623-637. doi:10.1080/01621459.2016.1150851 |
32 | HUO X, SZÉKELY G J .Fast computing for distance covariance[J].Technometrics,2016,58(4):435-447. doi:10.1080/00401706.2015.1054435 |
33 | ZHANG N, KANG C, XU Q,et al .Modelling and simulating the spatio-temporal correlations of clustered wind power using copula[J].Journal of Electrical Engineering and Technology,2013,8(6):1615-1625. doi:10.5370/jeet.2013.8.6.1615 |
34 | WĘGLARCZYK S .Kernel density estimation and its application[J].ITM Web of Conferences,2018,23:00037. doi:10.1051/itmconf/20182300037 |
35 | DURANTE F, SEMPI C .Copula theory:an introduction[C]//Copula Theory and Its Applications,Lecture Notes in Statistics.Berlin,Heidelberg:Springer,2010:3-31. doi:10.1007/978-3-642-12465-5_1 |
36 | KHOSRAVI A, NAHAVANDI S, CREIGHTON D .Construction of optimal prediction intervals for load forecasting problems[J].IEEE Transactions on Power Systems,2010,25(3):1496-1503. doi:10.1109/tpwrs.2010.2042309 |
37 | KHOSRAVI A, NAHAVANDI S, CREIGHTON D,et al .Comprehensive review of neural network-based prediction intervals and new advances[J].IEEE Transactions on Neural Networks,2011,22(9):1341-1356. doi:10.1109/tnn.2011.2162110 |
[1] | 孟梓睿, 刘雅雯, 巨星. 光伏-压电复合独立供电系统的运行分析[J]. 发电技术, 2024, 45(4): 696-704. |
[2] | 叶健强, 孙敦虎. 碳交易条件下基于鲁棒优化的电源规划研究[J]. 发电技术, 2024, 45(3): 566-574. |
[3] | 赵斌, 梁告, 姜孟浩, 邹港, 王力. 光储系统并网功率波动平抑及储能优化配置[J]. 发电技术, 2024, 45(3): 423-433. |
[4] | 贾晓强, 杨永标, 杜姣, 甘海庆, 杨楠. 气候变化条件下基于智能预测模型的虚拟电厂不确定性运行优化研究[J]. 发电技术, 2023, 44(6): 790-799. |
[5] | 吕清泉, 张珍珍, 马彦宏, 张健美, 高鹏飞, 蒋婷婷, 朱红路. 区域光伏发电出力特性分析研究[J]. 发电技术, 2022, 43(3): 413-420. |
[6] | 肖瑶, 钮文泽, 魏高升, 崔柳, 杜小泽. 太阳能光伏/光热技术研究现状与发展趋势综述[J]. 发电技术, 2022, 43(3): 392-404. |
[7] | 张永蕊, 阎洁, 林爱美, 韩爽, 刘永前. 多点数值天气预报风速和辐照度集中式修正方法研究[J]. 发电技术, 2022, 43(2): 278-286. |
[8] | 宋学伟, 刘玉瑶. 基于改进K-means聚类的风光发电场景划分[J]. 发电技术, 2020, 41(6): 625-630. |
[9] | 张燕平, 张宇超, 刘易飞. 基于概率可靠度的槽式太阳能电站优化设计[J]. 发电技术, 2020, 41(6): 590-598. |
[10] | 张哲旸,巨星,潘信宇,杨宇,徐超,杜小泽. 太阳能光伏-光热复合发电技术及其商业化应用[J]. 发电技术, 2020, 41(3): 220-230. |
[11] | 施云辉,郭创新,丁筱. 基于仿射可调鲁棒优化的园区综合能源系统经济调度[J]. 发电技术, 2020, 41(2): 118-125. |
[12] | 施云辉,郭创新. 考虑运行风险的含储能综合能源系统优化调度[J]. 发电技术, 2020, 41(1): 56-63. |
[13] | 张斌,张超,韩晓娟. 含规模化风电并网的负荷频率云PI控制策略研究[J]. 发电技术, 2019, 40(6): 516-520. |
[14] | 于航,刘阳,连魏魏,朱红路. 一种基于神经网络的硅基光伏组件运行温度在线软测量方法[J]. 发电技术, 2018, 39(6): 566-573. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||