Power Generation Technology ›› 2022, Vol. 43 ›› Issue (6): 918-926.DOI: 10.12096/j.2096-4528.pgt.21107
• Power Generation and Environmental Protection • Previous Articles Next Articles
Hongjian WANG1, Haiyang WANG2, Hao KONG2, Tuo ZHOU2, Man ZHANG2, Hairui YANG2
Received:
2021-12-22
Published:
2022-12-31
Online:
2023-01-03
Supported by:
CLC Number:
Hongjian WANG, Haiyang WANG, Hao KONG, Tuo ZHOU, Man ZHANG, Hairui YANG. Retrofitting Strategy and Operating Technology of Pure Burning Zhundong Coal in a 135 MW Circulating Fluidized Bed Boiler[J]. Power Generation Technology, 2022, 43(6): 918-926.
参数 | 数值 |
---|---|
过热蒸汽流量/(t/h) | 440 |
过热蒸汽温度/℃ | 540 |
过热蒸汽出口压力/MPa | 13.7 |
再热蒸汽流量/(t/h) | 358.8 |
再热蒸汽进(出)口温度/℃ | 318.4(540) |
再热蒸汽进(出)口压力/MPa | 2.71(2.56) |
省煤器进口给水温度/℃ | 248 |
空气预热器进风温度/℃ | 20 |
锅筒工作压力/MPa | 14.97 |
Tab. 1 Design parameters of boiler
参数 | 数值 |
---|---|
过热蒸汽流量/(t/h) | 440 |
过热蒸汽温度/℃ | 540 |
过热蒸汽出口压力/MPa | 13.7 |
再热蒸汽流量/(t/h) | 358.8 |
再热蒸汽进(出)口温度/℃ | 318.4(540) |
再热蒸汽进(出)口压力/MPa | 2.71(2.56) |
省煤器进口给水温度/℃ | 248 |
空气预热器进风温度/℃ | 20 |
锅筒工作压力/MPa | 14.97 |
项目 | 烟气进口温度/℃ | 烟气出口温度/℃ | 工质进口温度/℃ | 工质出口温度/℃ | 烟气平均流速/(m/s) | 过量空气系数 |
---|---|---|---|---|---|---|
炉膛 | — | — | 341 | 345 | — | — |
屏式过热器 | — | — | 388 | 510 | — | — |
分离器 | 879 | 863 | 341 | 361 | — | 1.2 |
包墙过热器 | 863 | — | 361 | 382 | — | 1.2 |
末级过热器 | 792 | 636 | 494 | 546 | 13.4 | 1.2 |
初级过热器 | 630 | 502 | 382 | 406 | 11.5 | 1.2 |
省煤器 | 502 | 307 | 248 | 309 | 8.02 | 1.2 |
Tab. 2 Typical parameters at boiler full load
项目 | 烟气进口温度/℃ | 烟气出口温度/℃ | 工质进口温度/℃ | 工质出口温度/℃ | 烟气平均流速/(m/s) | 过量空气系数 |
---|---|---|---|---|---|---|
炉膛 | — | — | 341 | 345 | — | — |
屏式过热器 | — | — | 388 | 510 | — | — |
分离器 | 879 | 863 | 341 | 361 | — | 1.2 |
包墙过热器 | 863 | — | 361 | 382 | — | 1.2 |
末级过热器 | 792 | 636 | 494 | 546 | 13.4 | 1.2 |
初级过热器 | 630 | 502 | 382 | 406 | 11.5 | 1.2 |
省煤器 | 502 | 307 | 248 | 309 | 8.02 | 1.2 |
检测项目 | 数值 |
---|---|
全水分质量分数Mt /% | 27.4 |
空气干燥基水分质量分数Mad /% | 8.76 |
收到基灰分产率Aar /% | 5.33 |
干燥无灰基挥发分产率Vdaf /% | 29.12 |
收到基固定碳质量分数FCar /% | 47.68 |
收到基全硫质量分数St,ar /% | 0.72 |
收到基碳质量分数Car /% | 54.46 |
收到基氢质量分数Har /% | 3.02 |
收到基氧质量分数Oar /% | 8.56 |
收到基氮质量分数Nar /% | 0.50 |
收到基高位发热量Qgr,ar /(MJ/kg) | 20.91 |
收到基低位发热量Qnet,ar /(MJ/kg) | 19.66 |
Tab. 3 Results of industrial and elemental analyses of coal types (Jianger B5 Mine)
检测项目 | 数值 |
---|---|
全水分质量分数Mt /% | 27.4 |
空气干燥基水分质量分数Mad /% | 8.76 |
收到基灰分产率Aar /% | 5.33 |
干燥无灰基挥发分产率Vdaf /% | 29.12 |
收到基固定碳质量分数FCar /% | 47.68 |
收到基全硫质量分数St,ar /% | 0.72 |
收到基碳质量分数Car /% | 54.46 |
收到基氢质量分数Har /% | 3.02 |
收到基氧质量分数Oar /% | 8.56 |
收到基氮质量分数Nar /% | 0.50 |
收到基高位发热量Qgr,ar /(MJ/kg) | 20.91 |
收到基低位发热量Qnet,ar /(MJ/kg) | 19.66 |
参数 | 五彩湾 | 天池南矿 | 宜化 | 义马 | 将二矿 |
---|---|---|---|---|---|
Mt /% | 27.3 | 28.2 | 18.7 | 15 | 23 |
St,ar /% | 0.55 | 0.55 | 0.36 | 0.78 | 0.21 |
Qnet,v,ar /(MJ/kg) | 19.13 | 18.38 | 21.95 | 23.91 | 20.98 |
w(SiO2)/% | 17.08 | 26.91 | 25.49 | 31.51 | 25.2 |
w(Al2O3)/% | 6.99 | 7.42 | 11.89 | 17.04 | 9.54 |
w(Fe2O3)/% | 11.6 | 2.91 | 5.83 | 15.39 | 17.04 |
w(CaO)/% | 27.53 | 40.82 | 27.85 | 13.24 | 16.45 |
w(MgO)/% | 7.42 | 7.83 | 4.66 | 4.17 | 11.05 |
w(Na2O)/% | 6.08 | 6.67 | 4.45 | 6.49 | 9.30 |
w(K2O)/% | 0.46 | 0.38 | 0.27 | 0.24 | 0.34 |
w(SO3)/% | 21.65 | 0.57 | 17.72 | 10.18 | 9.65 |
Tab. 4 Comparison of ash composition parameters of typical Zhundong coals
参数 | 五彩湾 | 天池南矿 | 宜化 | 义马 | 将二矿 |
---|---|---|---|---|---|
Mt /% | 27.3 | 28.2 | 18.7 | 15 | 23 |
St,ar /% | 0.55 | 0.55 | 0.36 | 0.78 | 0.21 |
Qnet,v,ar /(MJ/kg) | 19.13 | 18.38 | 21.95 | 23.91 | 20.98 |
w(SiO2)/% | 17.08 | 26.91 | 25.49 | 31.51 | 25.2 |
w(Al2O3)/% | 6.99 | 7.42 | 11.89 | 17.04 | 9.54 |
w(Fe2O3)/% | 11.6 | 2.91 | 5.83 | 15.39 | 17.04 |
w(CaO)/% | 27.53 | 40.82 | 27.85 | 13.24 | 16.45 |
w(MgO)/% | 7.42 | 7.83 | 4.66 | 4.17 | 11.05 |
w(Na2O)/% | 6.08 | 6.67 | 4.45 | 6.49 | 9.30 |
w(K2O)/% | 0.46 | 0.38 | 0.27 | 0.24 | 0.34 |
w(SO3)/% | 21.65 | 0.57 | 17.72 | 10.18 | 9.65 |
项目 | 水冷屏面积变化/m2 | 屏式过热器面积变化/m2 | 下炉膛中部最高烟温/℃ | 下炉膛中部最低烟温/℃ |
---|---|---|---|---|
改造前 | — | — | 913 | 868 |
改造后 | 350 | 110 | 842 | 773 |
Tab. 5 Variation of heating surface area and flue gas temperature in middle part of lower furnace before and after boiler retrofit
项目 | 水冷屏面积变化/m2 | 屏式过热器面积变化/m2 | 下炉膛中部最高烟温/℃ | 下炉膛中部最低烟温/℃ |
---|---|---|---|---|
改造前 | — | — | 913 | 868 |
改造后 | 350 | 110 | 842 | 773 |
成分 | 煤粉炉渣 | 高岭土 | 差值 | |||
---|---|---|---|---|---|---|
炉渣1 | 炉渣2 | 炉渣3 | 平均值 | |||
w(SiO2) | 68.26 | 68.24 | 65.59 | 66.7 | 71.75 | -5.05 |
w(Al2O3) | 12.00 | 11.47 | 10.52 | 11.33 | 16.02 | -4.69 |
w(TiO2) | 0.83 | 0.77 | 0.75 | 0.78 | 0.98 | -0.20 |
w(Na2O) | 1.95 | 1.93 | 1.94 | 1.94 | 1.31 | 0.63 |
w(K2O) | 1.59 | 1.59 | 1.61 | 1.6 | 2.05 | -0.45 |
w(CaO) | 4.77 | 4.58 | 5.01 | 4.78 | 0.69 | 4.09 |
w(Fe2O3) | 7.34 | 9.48 | 8.63 | 8.49 | 5.84 | 2.65 |
w(MgO) | 2.38 | 2.44 | 2.26 | 2.36 | 0.91 | 1.45 |
w(MnO2) | 0.13 | 0.17 | 0.14 | 0.14 | 0.09 | 0.05 |
Tab. 6 Comparison of pulverized coal boiler slag and kaolin composition
成分 | 煤粉炉渣 | 高岭土 | 差值 | |||
---|---|---|---|---|---|---|
炉渣1 | 炉渣2 | 炉渣3 | 平均值 | |||
w(SiO2) | 68.26 | 68.24 | 65.59 | 66.7 | 71.75 | -5.05 |
w(Al2O3) | 12.00 | 11.47 | 10.52 | 11.33 | 16.02 | -4.69 |
w(TiO2) | 0.83 | 0.77 | 0.75 | 0.78 | 0.98 | -0.20 |
w(Na2O) | 1.95 | 1.93 | 1.94 | 1.94 | 1.31 | 0.63 |
w(K2O) | 1.59 | 1.59 | 1.61 | 1.6 | 2.05 | -0.45 |
w(CaO) | 4.77 | 4.58 | 5.01 | 4.78 | 0.69 | 4.09 |
w(Fe2O3) | 7.34 | 9.48 | 8.63 | 8.49 | 5.84 | 2.65 |
w(MgO) | 2.38 | 2.44 | 2.26 | 2.36 | 0.91 | 1.45 |
w(MnO2) | 0.13 | 0.17 | 0.14 | 0.14 | 0.09 | 0.05 |
1 | 韩峰,丛堃林,李清海,等 .多流程循环流化床技术在综合能源服务中的应用[J].发电技术,2020,41(2):104-109. doi:10.12096/j.2096-4528.pgt.19171 |
HAN F, CONG K L, LI Q H,et al .Application of multi-pass circulating fluidized bed in integrated energy service[J].Power Generation Technology,2020,41(2):104-109. doi:10.12096/j.2096-4528.pgt.19171 | |
2 | 牛斌,李丽锋,孙倩,等 .超临界循环流化床机组全负荷段深度调峰方法研究[J].发电技术,2021,42(2):273-279. doi:10.12096/j.2096-4528.pgt.20024 |
NIU B, LI L F, SUN Q,et al .Research on the method of depth peaking at full load of supercritical circulating fluidized bed unit[J].Power Generation Technology,2021,42(2):273-279. doi:10.12096/j.2096-4528.pgt.20024 | |
3 | 姚禹歌,黄中,张缦,等 .中国循环流化床燃烧技术的发展与展望[J].热力发电,2021,50(11):13-19. |
YAO Y G, HUANG Z, ZHANG M,et al .Development and prospect of circulating fluidized bed combustion technology in China[J].Thermal Power Generation,2021,50(11):13-19. | |
4 | 陈媛,许杨,盛昌栋 .准东煤热解、燃烧和气化过程中Na的行为及高岭土的捕获作用[J].中国电机工程学报,2016,36(16):4396-4401. |
CHEN Y, XU Y, SHENG C D .Behavior of Na and its capture by adding Kaolin during devolatilization,combustion and gasification of Zhundong coal[J].Proceedings of the CSEE,2016,36(16):4396-4401. | |
5 | 周永刚,范建勇,李培,等 .高碱金属准东煤灰熔融过程的矿物质衍变[J].浙江大学学报(工学版),2015,49(8):1559-1564. |
ZHOU Y G, FAN J Y, LI P,et al .Mineral transmutation of high alkali Zhundong coal in ash melting process[J].Journal of Zhejiang University(Engineering Science),2015,49(8):1559-1564. | |
6 | LI G D, LI S Q, HUANG Q,et al .Fine particulate formation and ash deposition during pulverized coal combustion of high-sodium lignite in a down-fired furnace[J].Fuel,2015,143:430-437. |
7 | 孙洪民 .准东煤结渣沾污特性研究及燃烧技术[J].锅炉制造,2020(4):22-24. |
SUN H M .Research of slagging and fouling characteristics and combustion technology of Zhundong coal[J].Boiler Manufacturing,2020(4):22-24. | |
8 | 史航,吴玉新,郭前鑫,等 .准东煤碱金属在350 MW煤粉炉内的沿程分布特性[J].中国电机工程学报,2018,38(23):6981-6986. |
SHI H, WU Y X, GUO Q X,et al .Distribution characteristics of the alkali in Zhundong coal along the flue gas of a 350 MW pulverized coal furnace[J].Proceeding of the CSEE,2018,38(23):6981-6986. | |
9 | WANG C A, FAN G F, SUN R J,et al .Effects of coal blending on transformation of alkali and alkaline-earth metals and iron during oxy-fuel co-combustion of Zhundong coal and high-Si/Al coal[J].Journal of the Energy Institute,2021,94:96-106. |
10 | 王智化,李谦,刘敬,等 .准东煤中碱金属的赋存形态及其在热解过程中的迁移规律[J].中国电机工程学报,2014,34(S1):130-135. |
WANG Z H, LI Q, LIU J,et al .Occurrence of alkali metals in Zhundong coal and its migration during pyrolysis process[J].Proceedings of the CSEE,2014,34(S1):130-135. | |
11 | 王云刚,赵钦新,马海东,等 .准东煤灰熔融特性试验研究[J].动力工程学报,2013,33(11):841-846. |
WANG Y G, ZHAO Q X, MA H D,et al .Experimental study on ash fusion characteristics of Zhundong coal[J].Journal of Chinese Society of Power Engineering,2013,33(11):841-846. | |
12 | 曾孝阳 .燃煤循环流化床锅炉改烧生物质燃料的改造方案[J].应用能源技术,2021(7):39-42. doi:10.3969/j.issn.1009-3230.2021.07.012 |
ZENG X Y .Transformation scheme of coal-fired circulating fluidized bed boiler to burn biomass fuel[J].Applied Energy Technology,2021(7):39-42. doi:10.3969/j.issn.1009-3230.2021.07.012 | |
13 | 茹宇,许杰,任朝晖,等 .循环流化床锅炉分离器中心筒改造对锅炉性能的影响[J].热力发电,2020,49(6):26-31. |
RU Y, XU J, REN C H,et al .Effect of retrofitting of separator vortex finder on CFB boiler’s performance[J].Thermal Power Generation,2020,49(6):26-31. | |
14 | 史红军,陈桂昌 .循环流化床锅炉节能环保改造研究[J].应用能源技术,2018(2):21-24. doi:10.3969/j.issn.1009-3230.2018.02.005 |
SHI H J, CHEN G C .Research on energy saving and environmental protection transformation of circulating fluidized bed boiler[J].Applied Energy Technology,2018(2):21-24. doi:10.3969/j.issn.1009-3230.2018.02.005 | |
15 | 刘俊杰 .循环流化床锅炉分离器的改造研究[J].山西化工,2018,38(2):143-144. |
LIU J J .Study on the reformation of the separator in a CFB boiler[J].Shanxi Chemical Industry,2018,38(2):143-144. | |
16 | 李定青,李德波,毕武林,等 .掺烧高岭土对CFB锅炉高温受热面沉积和腐蚀特性影响研究[J].浙江电力,2020,39(12):112-116. |
LI D Q, LI D B, BI W L,et al .Characteristics of high-temperature heating surface of CFB boilers[J].Zhejiang Electric Power,2020,39(12):112-116. | |
17 | 李光辉,范蕊,王峰,等 .降低循环流化床锅炉结渣风险的准东煤配煤掺烧研究[J].能源与节能,2021(4):112-115. |
LI G H, FAN R, WANG F,et al .Study on blending and burning Zhundong coal to reduce slagging risk of circulating fluidized bed boiler[J].Energy and Energy Conservation,2021(4):112-115. | |
18 | 张耀,邹铭,方顺利,等 .350 MW机组锅炉准东煤掺烧试验研究[J].工业加热,2018,47(2):43-45. |
ZHANG Y, ZOU M, FANG S L,et al .Experimental Study on co-firing Zhundong coal in a 350 MW boiler[J].Industrial Heating,2018,47(2):43-45. | |
19 | 沈铭科,邱坤赞,黄镇宇,等 .准东煤掺烧高岭土对固钠率及灰熔融特性影响研究[J].燃料化学学报,2015,43(9):1044-1051. doi:10.3969/j.issn.0253-2409.2015.09.004 |
SHEN M K, QIU K Z, HUANG Z Y,et al .Influence of Kaolin on sodium retention and ash fusion characteristic during combustion of Zhundong coal[J].Journal of Fuel Chemistry and Technology,2015,43(9):1044-1051. doi:10.3969/j.issn.0253-2409.2015.09.004 |
[1] | Qigang DENG, Zhuo LÜ, You SHI, Jiayi LU, Xu ZHOU, Aoyu WANG, Dong YANG. Safety Calculation and Analysis of Water Wall for a 700 MW Ultra-Supercritical Circulating Fluidized Bed Boiler Without External Bed After Power Failure [J]. Power Generation Technology, 2024, 45(2): 240-249. |
[2] | Shengli LIU, Haijun ZHANG, Jian CHENG, Yuxiu ZHONG, Jun XU, Long JIANG, Yi WANG, Sheng SU, Song HU, Jun XIANG. Research on Slagging and High Temperature Corrosion Prevention and Control of a 1 000 MW Ultra Supercritical Double Tangentially Fired Boiler [J]. Power Generation Technology, 2023, 44(2): 171-182. |
[3] | Hao SHI, Haiping XIAO, Yanpeng LIU. Prediction and Comparison of Ash Fusion Temperatures Based on BP Neural Network and Least Squares Support Vector Machine [J]. Power Generation Technology, 2022, 43(1): 139-146. |
[4] | Debo LI,Chengliang CUI,Yongjun JIANG,Weimin SHI,Pengfei ZHANG,Fei MO,Yanfen LIAO,Xiaoqian MA. Investigation of Fusion Characteristics in Co-combustion of Coal With Municipal Sludge [J]. Power Generation Technology, 2019, 40(4): 347-354. |
[5] | Hao ZHOU,Zhenhuan CHEN,Jiakai ZHANG,Chenying ZHOU. Study on Melting Characteristics of Zhundong Coal Under Oxygen-rich/H2O-O2 Conditions [J]. Power Generation Technology, 2019, 40(3): 208-212. |
[6] | Pengzhi XU,Pengyuan LIU,Jiajia GAO,Jianping HUANG,Guifu WU,Wen TANG. Analysis and Elimination of the Cause of Furnace Slagging in a Supercritical Slit Type Burner W-Flame Boiler [J]. Power Generation Technology, 2018, 39(2): 146-152. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||