Power Generation Technology ›› 2023, Vol. 44 ›› Issue (2): 171-182.DOI: 10.12096/j.2096-4528.pgt.21125
• Power Generation and Environmental Protection • Previous Articles Next Articles
Shengli LIU1, Haijun ZHANG2, Jian CHENG2, Yuxiu ZHONG3, Jun XU3, Long JIANG3, Yi WANG3, Sheng SU3, Song HU3, Jun XIANG3
Received:
2022-01-01
Published:
2023-04-30
Online:
2023-04-28
Supported by:
CLC Number:
Shengli LIU, Haijun ZHANG, Jian CHENG, Yuxiu ZHONG, Jun XU, Long JIANG, Yi WANG, Sheng SU, Song HU, Jun XIANG. Research on Slagging and High Temperature Corrosion Prevention and Control of a 1 000 MW Ultra Supercritical Double Tangentially Fired Boiler[J]. Power Generation Technology, 2023, 44(2): 171-182.
元素 | Al | Si | S | Fe | Ca | Ti | 其他 |
---|---|---|---|---|---|---|---|
质量分数/% | 24.47 | 55.86 | 1.29 | 9.17 | 5.14 | 1.70 | 2.37 |
Tab. 1 XRF test results of boiler slagging products
元素 | Al | Si | S | Fe | Ca | Ti | 其他 |
---|---|---|---|---|---|---|---|
质量分数/% | 24.47 | 55.86 | 1.29 | 9.17 | 5.14 | 1.70 | 2.37 |
暴露面 | 基体结合面 | ||
---|---|---|---|
元素组成 | 质量分数/% | 元素组成 | 质量分数/% |
Al | 33.50 | Al | 4.83 |
Si | 38.29 | Si | 3.74 |
S | 12.03 | S | 22.57 |
Fe | 12.65 | Fe | 68.21 |
Mn | 0.25 | Mn | 0.43 |
Ti | 1.32 | Cu | 0.08 |
K | 1.96 | Cr | 0.14 |
Fe/S | 1.05 | Fe/S | 3.02 |
Tab. 2 XRF test results of corrosion exfoliation
暴露面 | 基体结合面 | ||
---|---|---|---|
元素组成 | 质量分数/% | 元素组成 | 质量分数/% |
Al | 33.50 | Al | 4.83 |
Si | 38.29 | Si | 3.74 |
S | 12.03 | S | 22.57 |
Fe | 12.65 | Fe | 68.21 |
Mn | 0.25 | Mn | 0.43 |
Ti | 1.32 | Cu | 0.08 |
K | 1.96 | Cr | 0.14 |
Fe/S | 1.05 | Fe/S | 3.02 |
煤质特性 | 设计煤种 | 备选煤种编号 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
元素分析 | w(C)/% | 53.41 | 69.29 | 59.15 | 55.51 | 63.18 | 55.92 | 44.50 | 45.31 | 51.86 | 53.75 | 61.08 |
w(H)/% | 3.16 | 3.17 | 3.11 | 2.99 | 3.66 | 3.17 | 2.94 | 3.13 | 2.41 | 3.20 | 3.21 | |
w(N)/% | 0.65 | 1.10 | 0.89 | 1.09 | 1.03 | 0.76 | 0.88 | 0.64 | 0.68 | 0.58 | 1.04 | |
w(S)/% | 1.20 | 1.63 | 1.99 | 0.62 | 0.60 | 2.26 | 1.01 | 0.33 | 1.50 | 1.10 | 2.33 | |
w(O)/% | 6.21 | 1.65 | 0.63 | 4.08 | 3.62 | 5.33 | 4.79 | 10.62 | 1.70 | 6.83 | 1.43 | |
工业分析 | Mar /% | 6.05 | 6.08 | 5.70 | 13.20 | 6.21 | 3.94 | 14.29 | 8.52 | 8.81 | 12.08 | 5.83 |
Aar /% | 29.32 | 17.08 | 28.53 | 22.51 | 21.70 | 28.62 | 31.61 | 31.45 | 33.04 | 22.46 | 25.08 | |
Var /% | 21.20 | 7.38 | 7.18 | 10.70 | 27.07 | 9.84 | 20.10 | 28.33 | 7.77 | 22.55 | 7.39 | |
FCar /% | 43.43 | 69.46 | 58.59 | 53.59 | 45.02 | 57.60 | 34.00 | 31.70 | 50.38 | 42.91 | 61.70 | |
高位发热量/(MJ/kg) | 20.78 | 26.98 | 22.32 | 21.97 | 23.61 | 16.27 | 17.60 | 16.66 | 18.96 | 20.70 | 24.11 | |
低位发热量/(MJ/kg) | 20.02 | 26.11 | 21.50 | 20.97 | 22.63 | 15.23 | 16.60 | 15.74 | 18.20 | 19.68 | 23.25 |
Tab. 3 Characteristics of design coal and candidate coals
煤质特性 | 设计煤种 | 备选煤种编号 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
元素分析 | w(C)/% | 53.41 | 69.29 | 59.15 | 55.51 | 63.18 | 55.92 | 44.50 | 45.31 | 51.86 | 53.75 | 61.08 |
w(H)/% | 3.16 | 3.17 | 3.11 | 2.99 | 3.66 | 3.17 | 2.94 | 3.13 | 2.41 | 3.20 | 3.21 | |
w(N)/% | 0.65 | 1.10 | 0.89 | 1.09 | 1.03 | 0.76 | 0.88 | 0.64 | 0.68 | 0.58 | 1.04 | |
w(S)/% | 1.20 | 1.63 | 1.99 | 0.62 | 0.60 | 2.26 | 1.01 | 0.33 | 1.50 | 1.10 | 2.33 | |
w(O)/% | 6.21 | 1.65 | 0.63 | 4.08 | 3.62 | 5.33 | 4.79 | 10.62 | 1.70 | 6.83 | 1.43 | |
工业分析 | Mar /% | 6.05 | 6.08 | 5.70 | 13.20 | 6.21 | 3.94 | 14.29 | 8.52 | 8.81 | 12.08 | 5.83 |
Aar /% | 29.32 | 17.08 | 28.53 | 22.51 | 21.70 | 28.62 | 31.61 | 31.45 | 33.04 | 22.46 | 25.08 | |
Var /% | 21.20 | 7.38 | 7.18 | 10.70 | 27.07 | 9.84 | 20.10 | 28.33 | 7.77 | 22.55 | 7.39 | |
FCar /% | 43.43 | 69.46 | 58.59 | 53.59 | 45.02 | 57.60 | 34.00 | 31.70 | 50.38 | 42.91 | 61.70 | |
高位发热量/(MJ/kg) | 20.78 | 26.98 | 22.32 | 21.97 | 23.61 | 16.27 | 17.60 | 16.66 | 18.96 | 20.70 | 24.11 | |
低位发热量/(MJ/kg) | 20.02 | 26.11 | 21.50 | 20.97 | 22.63 | 15.23 | 16.60 | 15.74 | 18.20 | 19.68 | 23.25 |
指标 | 结焦倾向 | ||
---|---|---|---|
轻微 | 中等 | 严重 | |
酸碱比(B/A) | <0.206 | 0.206~0.400 | >0.400 |
硅比(G) | >78.8 | 78.8~66.1 | <66.1 |
硅铝比(X) | <1.87 | 1.87~2.65 | >2.65 |
铁钙比(Y) | <0.3或>3.0 | 0.3~3.0 | 接近1.0 |
综合指数(R) | <1.5 | 1.5~2.5 | >2.5 |
Tab. 4 Judgment limits of coal ash slagging tendency
指标 | 结焦倾向 | ||
---|---|---|---|
轻微 | 中等 | 严重 | |
酸碱比(B/A) | <0.206 | 0.206~0.400 | >0.400 |
硅比(G) | >78.8 | 78.8~66.1 | <66.1 |
硅铝比(X) | <1.87 | 1.87~2.65 | >2.65 |
铁钙比(Y) | <0.3或>3.0 | 0.3~3.0 | 接近1.0 |
综合指数(R) | <1.5 | 1.5~2.5 | >2.5 |
性能 | 煤种编号 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
w(C)/w(H) | 21.89 | 19.05 | 18.58 | 17.24 | 17.62 | 15.15 | 14.48 | 21.52 | 16.82 | 19.11 |
FCar/Var | 9.41 | 8.16 | 5.01 | 1.66 | 5.85 | 1.69 | 1.12 | 6.48 | 1.90 | 8.35 |
变形温度DT/℃ | >1 500 | 1 360 | 1 240 | 1 170 | >1 500 | 1 390 | 1 180 | >1 500 | 1 200 | 1 440 |
软化温度ST/℃ | >1 500 | 1 410 | 1 420 | 1 220 | >1 500 | 1 430 | 1 290 | >1 500 | 1 250 | 1 490 |
煤挥发分Vdaf/% | 9.61 | 10.91 | 16.64 | 37.55 | 14.59 | 37.16 | 47.2 | 13.36 | 34.46 | 10.69 |
煤种分类 | 无烟煤 | 烟煤 | 烟煤 | 烟煤 | 烟煤 | 烟煤 | 褐煤 | 烟煤 | 烟煤 | 烟煤 |
酸碱比(B/A) | 0.12 | 0.16 | 0.13 | 0.43 | 0.11 | 0.13 | 0.17 | 0.14 | 0.19 | 0.18 |
硅比(G) | 84.52 | 82.87 | 85.22 | 61.49 | 84.57 | 84.76 | 82.93 | 86.08 | 81.77 | 78.92 |
硅铝比(X) | 1.58 | 1.83 | 1.84 | 2.10 | 1.28 | 1.89 | 2.32 | 1.82 | 2.59 | 1.78 |
铁钙比(Y) | 0.23 | 0.85 | 1.11 | 0.34 | 3.91 | 0.72 | 1.29 | 3.74 | 2.74 | 0.47 |
综合指数(R) | 1.40 | 1.73 | 1.63 | 2.93 | 1.31 | 1.64 | 2.12 | 1.46 | 2.33 | 1.67 |
结焦倾向 | 轻微 | 中等 | 中等 | 严重 | 轻微 | 中等 | 中等 | 轻微 | 中等 | 中等 |
Tab. 5 Evaluation of coal slagging performance
性能 | 煤种编号 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
w(C)/w(H) | 21.89 | 19.05 | 18.58 | 17.24 | 17.62 | 15.15 | 14.48 | 21.52 | 16.82 | 19.11 |
FCar/Var | 9.41 | 8.16 | 5.01 | 1.66 | 5.85 | 1.69 | 1.12 | 6.48 | 1.90 | 8.35 |
变形温度DT/℃ | >1 500 | 1 360 | 1 240 | 1 170 | >1 500 | 1 390 | 1 180 | >1 500 | 1 200 | 1 440 |
软化温度ST/℃ | >1 500 | 1 410 | 1 420 | 1 220 | >1 500 | 1 430 | 1 290 | >1 500 | 1 250 | 1 490 |
煤挥发分Vdaf/% | 9.61 | 10.91 | 16.64 | 37.55 | 14.59 | 37.16 | 47.2 | 13.36 | 34.46 | 10.69 |
煤种分类 | 无烟煤 | 烟煤 | 烟煤 | 烟煤 | 烟煤 | 烟煤 | 褐煤 | 烟煤 | 烟煤 | 烟煤 |
酸碱比(B/A) | 0.12 | 0.16 | 0.13 | 0.43 | 0.11 | 0.13 | 0.17 | 0.14 | 0.19 | 0.18 |
硅比(G) | 84.52 | 82.87 | 85.22 | 61.49 | 84.57 | 84.76 | 82.93 | 86.08 | 81.77 | 78.92 |
硅铝比(X) | 1.58 | 1.83 | 1.84 | 2.10 | 1.28 | 1.89 | 2.32 | 1.82 | 2.59 | 1.78 |
铁钙比(Y) | 0.23 | 0.85 | 1.11 | 0.34 | 3.91 | 0.72 | 1.29 | 3.74 | 2.74 | 0.47 |
综合指数(R) | 1.40 | 1.73 | 1.63 | 2.93 | 1.31 | 1.64 | 2.12 | 1.46 | 2.33 | 1.67 |
结焦倾向 | 轻微 | 中等 | 中等 | 严重 | 轻微 | 中等 | 中等 | 轻微 | 中等 | 中等 |
1 | 李文华,吴贤豪,陈彪,等 .超低排放燃煤机组SO3和NH3生成及迁移规律研究[J].浙江电力,2021,40(8):91-95. doi:10.19585/j.zjdl.202108014 |
LI W H, WU X H, CHEN B,et al .Research on the formation and migration characteristics of SO3 and NH3 in ultra-low emission coal-fired units[J].Zhejiang Electric Power,2021,40(8):91-95. doi:10.19585/j.zjdl.202108014 | |
2 | 冯前伟,朱仁涵,徐思达,等 .1 000 MW燃煤机组SCR超低排放关键参数性能评估与分析[J].发电技术,2022,43(1):168-174. doi:10.12096/j.2096-4528.pgt.20030 |
FENG Q W, ZHU R H, XU S D,et al .Performance evaluation and analysis of key parameters of SCR ultra-low emission for 1 000 MW coal-fired unit[J].Power Generation Technology,2022,43(1):168-174. doi:10.12096/j.2096-4528.pgt.20030 | |
3 | 程晓磊 .低氮燃烧技术在煤粉工业锅炉上的应用[J].洁净煤技术,2018,24(4):109-113. |
CHENG X L .Application of low-NO x combustion technology on pulverized coal industrial boiler[J].Clean Coal Technology,2018,24(4):109-113. | |
4 | SIMMS N J, KILGALLON P J, OAKEY J E .Fireside issues in advanced power generation systems[J].Energy Materials,2007,2(3):154-161. doi:10.1179/174892408x373509 |
5 | YU X H, GONG B G, GAO Q,et al .Investigation of fireside corrosion at water-cooled wall from a coal-fired power plant in China[J].Applied Thermal Engineering,2017,127:1164-1171. doi:10.1016/j.applthermaleng.2017.08.053 |
6 | 李广伟,孙俊威,黄启龙 .600 MW对冲燃烧锅炉水冷壁高温腐蚀原因分析及对策[J].华电技术,2016,38(6):43-46. |
LI G W, SUN J W, HUANG Q L .600 MW opposed firing boiler water wall high temperature corrosion causes analysis and treatment[J].Huadian Technology,2016,38(6):43-46. | |
7 | RONDRIGUEZ J A, CHATURVEDI S, KUHN M,et al .Reaction of H2S and S2 with metal/oxide surfaces:band-gap size and chemical reactivity[J].The Journal of Physical Chemistry B,1998,102(28):5511-5519. doi:10.1021/jp9815208 |
8 | 吕洪坤,童家麟,刘建忠,等 .1 000 MW超超临界锅炉高温腐蚀分析及对策[J].北京工业大学学报,2017,43(3):481-488. |
LV H K, TONG J L, LIU J Z,et al .Analysis and solution of high-temperature corrosion for a 1 000 MW ultra-supercritical boiler[J].Journal of Beijing University of Technology,2017,43(3):481-488. | |
9 | 徐力刚,黄亚继,王健,等 .还原性气氛下水冷壁材料15 CrMoG的高温腐蚀特性[J].浙江大学学报(工学版),2018,52(8):1535-1541. |
XU L G, HUANG Y J, WANG J,et al .High-temperature corrosion properties of water wall material 15 CrMoG under reducing atmosphere[J].Journal of Zhejiang University (Engineering Science),2018,52(8):1535-1541. | |
10 | 欧阳朱峰 .低氮燃烧锅炉水冷壁防护涂层抗高温腐蚀机理与性能研究[D].武汉:华中科技大学,2019. |
OUYANG Z F .Study on high temperature corrosion resistance and mechanism of protective coatings for water-cooled wall of low-NO x combustion boiler[D].Wuhan:Huazhong University of Science and Technology,2019. | |
11 | 敖翔 .超超临界锅炉螺旋式上升水冷壁的高温腐蚀研究[D].杭州:浙江大学,2017. |
AO X .Analysis of high temperature corrosion of spiral waterwall tubes in a coal-fired (ultra) supercritical boiler[D].Hangzhou:Zhejiang University,2017. | |
12 | 王志强 .煤种性质对煤粉工业锅炉结焦的影响[J].洁净煤技术,2020,26(2):137-144. |
WANG Z Q .Influence of coal properties on coking of pulverized coal industrial boiler[J].Clean Coal Technology,2020,26(2):137-144. | |
13 | 吴英,毛晓飞 .600 MW四墙切圆燃烧超临界锅炉结焦防治技术[J].中国电力,2013,46(5):1-5. |
WU Y, MAO X F .Research on slagging prevention in 600 MW supercritical boilers with four-wall tangential firing[J].Electric Power,2013,46(5):1-5. | |
14 | DYK J C V, BENSON S A, LAUMB M L .Coal and coal ash characteristics to understand mineral transformations and slag formation[J].Fuel,2009,88(6):1057-1063. doi:10.1016/j.fuel.2008.11.034 |
15 | 熊斐 .煤粉燃烧时煤中硫铁矿的转变和结渣的防治[D].南京:东南大学,2000. |
XIONG F .Transformation of pyrites and slagging prevention during caol combustion[D].Nanjing:Southeast University,2000. | |
16 | 陈志国,华永明,盛昌栋,等 .硫铁矿颗粒在炉内运动数值模拟及对结渣的影响[J].燃烧科学与技术,2001,7(2):132-134. doi:10.3321/j.issn:1006-8740.2001.02.007 |
CHEN Z G, HUA Y M, SHENG C D,et al .Studies on motion of pyrite particle in furnace and effect on slag deposit by numerical simulation[J].Journal of Combustion Science and Technology,2001,7(2):132-134. doi:10.3321/j.issn:1006-8740.2001.02.007 | |
17 | 章琪 .燃煤锅炉炉内燃烧及结焦特性研究[D].上海:上海电力学院,2018. |
ZHANG Q .Research on combustion and slagging characteristic of coal-fired boiler[D].Shanghai:Shanghai University of Electric Power,2018. | |
18 | 李敏,丘纪华,向军 .锅炉水冷壁高温腐蚀运行工况的防腐模拟[J].中国电机工程学报,2002,22(7):150-154. doi:10.3321/j.issn:0258-8013.2002.07.031 |
LI M, QIU J H, XIANG J .An anti-corrosion simulation for the high temperature corrosion on boiler water-wall during different operation[J].Proceedings of the CSEE,2002,22(7):150-154. doi:10.3321/j.issn:0258-8013.2002.07.031 | |
19 | 毛晓飞,左志雄,汪正海,等 .燃用高硫煤四角切圆锅炉水冷壁高温腐蚀治理[J].热力发电,2019,48(4):96-103. |
MAO X F, ZUO Z X, WANG Z H,et al .High temperature corrosion control for water wall of a tangentially-fired boiler firing high sulfur coal[J].Thermal Power Generation,2019,48(4):96-103. | |
20 | 谢召祥,凌鹏,湛芳,等 .分离燃尽风对贫煤锅炉CO和H2S生成特性的影响[J].动力工程学报,2021,41(9):729-735. |
XIE Z X, LING P, ZHAN F,et al .Influence of separated over fire air on CO and H2S formation characteristic of a lean coal-fired boiler[J].Journal of Chinese Society of Power Engineering,2021,41(9):729-735. | |
21 | 陈广伟,黄建平,徐鹏志 .兰炭在 600 MW 无烟煤“W”火焰锅炉上的掺烧应用研究[J].发电技术,2021,42(2):267-272. doi:10.12096/j.2096-4528.pgt.20029 |
CHEN G W, HUANG J P, XU P Z .Application research of semi-coke blending on a 600 MW anthracite “W” flame boiler[J].Power Generation Technology,2021,42(2):267-272. doi:10.12096/j.2096-4528.pgt.20029 | |
22 | 郭利 .层燃锅炉煤结焦特性判别指数研究[D].哈尔滨:哈尔滨工业大学,2017. |
GUO L .Study on the disciminant index of coking characristic for coal combustion in stoker-fired boiler[D].Harbin:Harbin Institute of Technology,2017. | |
23 | SU S, POHL J H, HOLCOMBE D,et al .Slagging propensities of blended coals[J].Fuel,2001,80(9): 1351-1360. doi:10.1016/s0016-2361(00)00214-3 |
24 | 马国伟 .宁夏地区电站锅炉混煤燃烧特性研究与应用[D].南京:东南大学,2019. |
MA G W .Study and application of mixed coal combustion characteristics of power station boilers in Ningxia[D].Nanjing:Southeast University,2019. | |
25 | WANG Y B, LI L Y Z, WANG M,et al .Effect of ZnS/PbS deposites on high temperature corrosion control of waterwall tubes in reducing atmosphere[J].Fuel Processing Technology,2021,216:106793. doi:10.1016/j.fuproc.2021.106793 |
[1] | Xiaohe XIONG, Falin CHEN, Renhui RUAN, Houzhang TAN, Yansen LI. Experiment on Multi-Component Synchronous Test of Reducing Atmosphere Adjacent to Water Wall of High Temperature Corrosion Boiler [J]. Power Generation Technology, 2023, 44(6): 800-808. |
[2] | Hongjian WANG, Haiyang WANG, Hao KONG, Tuo ZHOU, Man ZHANG, Hairui YANG. Retrofitting Strategy and Operating Technology of Pure Burning Zhundong Coal in a 135 MW Circulating Fluidized Bed Boiler [J]. Power Generation Technology, 2022, 43(6): 918-926. |
[3] | Hao SHI, Haiping XIAO, Yanpeng LIU. Prediction and Comparison of Ash Fusion Temperatures Based on BP Neural Network and Least Squares Support Vector Machine [J]. Power Generation Technology, 2022, 43(1): 139-146. |
[4] | Debo LI,Chengliang CUI,Yongjun JIANG,Weimin SHI,Pengfei ZHANG,Fei MO,Yanfen LIAO,Xiaoqian MA. Investigation of Fusion Characteristics in Co-combustion of Coal With Municipal Sludge [J]. Power Generation Technology, 2019, 40(4): 347-354. |
[5] | Pengzhi XU,Pengyuan LIU,Jiajia GAO,Jianping HUANG,Guifu WU,Wen TANG. Analysis and Elimination of the Cause of Furnace Slagging in a Supercritical Slit Type Burner W-Flame Boiler [J]. Power Generation Technology, 2018, 39(2): 146-152. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||