Power Generation Technology ›› 2021, Vol. 42 ›› Issue (4): 404-411.DOI: 10.12096/j.2096-4528.pgt.21086
• Intelligent Turbine Power Generation Technology • Previous Articles Next Articles
Jin GUAN1(), Zongze HE1(
), Xiaojing LÜ2(
), Yiwu WENG1(
)
Received:
2021-06-23
Published:
2021-08-31
Online:
2021-07-22
Supported by:
CLC Number:
Jin GUAN, Zongze HE, Xiaojing LÜ, Yiwu WENG. Experimental Study on Startup of 30kW Micro Gas Turbine Generator Set[J]. Power Generation Technology, 2021, 42(4): 404-411.
参数 | 数值 |
额定转速/(r/min) | 34 000 |
压气机流量/(kg/s) | 0.56 |
压气机入口空气温度/℃ | 25 |
压气机压比 | 2.4 |
透平膨胀比 | 2.3 |
压气机效率 | 0.77 |
燃烧室效率 | 0.98 |
燃烧室总压恢复系数 | 0.94 |
透平入口温度/℃ | 850 |
透平效率 | 0.82 |
电机效率 | 0.96 |
电动机功率/kW | 30 |
Tab. 1 Designed parameters of 30 kW MGTGS
参数 | 数值 |
额定转速/(r/min) | 34 000 |
压气机流量/(kg/s) | 0.56 |
压气机入口空气温度/℃ | 25 |
压气机压比 | 2.4 |
透平膨胀比 | 2.3 |
压气机效率 | 0.77 |
燃烧室效率 | 0.98 |
燃烧室总压恢复系数 | 0.94 |
透平入口温度/℃ | 850 |
透平效率 | 0.82 |
电机效率 | 0.96 |
电动机功率/kW | 30 |
启动过程 | 启动路径 | 说明 |
电机从静止到启动 | 0–A | 克服电动机启动扭矩 |
电动机功率短暂下降 | A–B | 转速从0开始升高,阻力扭矩下降,在转速很低的情况下,压气机耗功很小 |
电动机功率增加,转速增加 | B–C | 随着转速的增加,压气机耗功增加 |
燃烧室点火 | C | 转速达到点火转速,燃烧室燃料点火 |
电动机耗功减小,燃料增加 | C–D | 点火之后,透平入口温度快速升高,由于在低转速下透平的膨胀比和效率都很低,透平输出功很小 |
电动机功率增速缓慢,燃料增加 | D–E | 随着转速的增加,透平膨胀比和效率逐步增大,透平输出功逐渐增加,增速变快,但仍比机组耗功增速小 |
电动机功率减小,燃料量增大 | E–F | 随着转速的增加,透平膨胀比和效率进一步增大,透平输出功增速大于机组耗功增速,电动机功率逐渐减小 |
电动机功率为0 | F | 达到自持状态,透平输出功与机组耗功相平衡,电动机脱钩 |
电动机功率持续为0,燃料增加 | F–G (F–K) | 机组保持自持状态,增加燃料量进行升速,直至达到额定转速(直至转速达到设定的发电转速) |
电动/发电方式切换 | G (K) | 发电机开始工作 |
发电机功率增加至额定功率 | G–H (K–H) | 燃料持续增加,透平入口温度增加,透平做功增加,机组耗功不变,发电机功率增加(转速和发电功率都增加) |
Tab. 2 Specifications of motor startup process of MGTGS
启动过程 | 启动路径 | 说明 |
电机从静止到启动 | 0–A | 克服电动机启动扭矩 |
电动机功率短暂下降 | A–B | 转速从0开始升高,阻力扭矩下降,在转速很低的情况下,压气机耗功很小 |
电动机功率增加,转速增加 | B–C | 随着转速的增加,压气机耗功增加 |
燃烧室点火 | C | 转速达到点火转速,燃烧室燃料点火 |
电动机耗功减小,燃料增加 | C–D | 点火之后,透平入口温度快速升高,由于在低转速下透平的膨胀比和效率都很低,透平输出功很小 |
电动机功率增速缓慢,燃料增加 | D–E | 随着转速的增加,透平膨胀比和效率逐步增大,透平输出功逐渐增加,增速变快,但仍比机组耗功增速小 |
电动机功率减小,燃料量增大 | E–F | 随着转速的增加,透平膨胀比和效率进一步增大,透平输出功增速大于机组耗功增速,电动机功率逐渐减小 |
电动机功率为0 | F | 达到自持状态,透平输出功与机组耗功相平衡,电动机脱钩 |
电动机功率持续为0,燃料增加 | F–G (F–K) | 机组保持自持状态,增加燃料量进行升速,直至达到额定转速(直至转速达到设定的发电转速) |
电动/发电方式切换 | G (K) | 发电机开始工作 |
发电机功率增加至额定功率 | G–H (K–H) | 燃料持续增加,透平入口温度增加,透平做功增加,机组耗功不变,发电机功率增加(转速和发电功率都增加) |
1 | 翁史烈. 现代燃气轮机装置[M]. 上海: 上海交通大学出版社, 2015: 275- 280. |
WENG S L . Modern gas turbine installations[M]. Shanghai: Shanghai Jiao Tong University Press, 2015: 275- 280. | |
2 | 翁一武, 闻雪友, 翁史烈. 燃气轮机技术及发展[J]. 自然杂志, 2017, 39 (1): 43- 47. |
WENG Y W , WEN X Y , WENG S L . Gas turbine technology and development[J]. Chinese Journal of Nature, 2017, 39 (1): 43- 47. | |
3 | 李孝堂, 侯凌云, 杨敏. 现代燃气轮机技术[M]. 北京: 航空工业出版社, 2006: 152- 160. |
LI Y T , HOU L Y , YANG M . Modern gas turbine technology[M]. Beijing: Aviation Industry Press, 2006: 152- 160. | |
4 | 于海, 孙亮, 岳云凯, 等. 基于微型燃气轮机的多微源直流微网主从协调控制[J]. 电力工程技术, 2019, 38 (6): 107- 114. |
YU H , SUN L , YUE Y K , et al. Master-slave coordinated control of multi-micro-source DC microgrid based on micro turbine[J]. Electric Power Engineering Technology, 2019, 38 (6): 107- 114. | |
5 |
朱俊杰, 王晓维, 董玉亮, 等. 基于工况辨识的重型燃气轮机性能评价方法研究[J]. 智慧电力, 2020, 48 (7): 24- 29.
DOI |
ZHU J J , WANG X W , DONG Y L , et al. Performance evaluation method of heavy duty gas turbine based on condition identification[J]. Smart Power, 2020, 48 (7): 24- 29.
DOI |
|
6 | 丰镇平, 刘晓勇, 张永海, 等. 微型燃气轮机热力系统的设计分析[J]. 工程热物理学报, 2002, 23 (S1): 17- 20. |
FENG Z P , LIU X Y , ZHANG Y H , et al. Design analysis of thermal system of microturbine[J]. Journal of Engineering Thermophysics, 2002, 23 (S1): 17- 20. | |
7 | 陈哲, 田丰, 吕小静, 等. 燃气轮机与可再生能源互补的分布式供能[J]. 自然杂志, 2017, 39 (1): 48- 53. |
CHEN Z , TIAN F , LÜ X J , et al. Distributed energy supply complemented gas turbine with renewable energy[J]. Chinese Journal of Nature, 2017, 39 (1): 48- 53. | |
8 | 薛晓东, 韩巍, 王晓东, 等. 适合分布式冷热电联供系统的中小型发电装置[J]. 发电技术, 2020, 41 (3): 252- 260. |
XUE X D , HAN W , WANG X D , et al. Small and medium-scale power generation devices suiting for distributed combined cooling, heating and power system[J]. Power Generation Technology, 2020, 41 (3): 252- 260. | |
9 | 张尔佳, 邰能灵, 陈旸, 等. 基于虚拟储能的综合能源系统分布式电源功率波动平抑策略[J]. 发电技术, 2020, 41 (1): 30- 40. |
ZHANG E J , TAI N L , CHEN Y , et al. A coordination strategy to smooth power fluctuation of distributed generation in integrated energy system based on virtual energy storage[J]. Power Generation Technology, 2020, 41 (1): 30- 40. | |
10 |
张林, 郭辉, 姚李孝. 基于改进蝙蝠算法的微电网优化研究[J]. 电网与清洁能源, 2021, 37 (4): 122- 126.
DOI |
ZHANG L , GUO H , YAO L X . Research on microgrid optimization based on improved bat algorithm[J]. Power System and Clean Energy, 2021, 37 (4): 122- 126.
DOI |
|
11 |
LÜ X , DING X , WENG Y . Effect of fuel composition fluctuation on the safety performance of an IT-SOFC/GT hybrid system[J]. Energy, 2019, 174, 45- 53.
DOI |
12 |
AICHMAYER L , GARRIDO J , LAUMERT B . Thermo-mechanical solar receiver design and validation for a micro gas-turbine based solar dish system[J]. Energy, 2020, 196, 116929.
DOI |
13 | 吴旺松, 薄泽民, 廖锷, 等. 微型燃气轮机-有机工质联合循环总体性能分析[J]. 热能动力程, 2020, 35 (12): 19- 25. |
WU W S , BO Z M , LIAO E , et al. Performance analysis of micro gas turbine-organic working fluid combined cycle[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35 (12): 19- 25. | |
14 |
KIM M J , KIM T S . Integration of compressed air energy storage and gas turbine to improve the ramp rate[J]. Applied Energy, 2019, 247, 363- 373.
DOI |
15 | BARAKAT A A , DIAB J H , BADAWI N S , et al. Combined cycle gas turbine system optimization for extended range electric vehicles[J]. Energy Conversion and Management, 2020, 226, 113538. |
16 |
左远志, 杨晓西, 丁静. 微型燃气轮机的生产厂商与性能影响因素[J]. 煤气与热力, 2007, 27 (3): 76- 79.
DOI |
ZUO Y Z , YANG X X , DING J . Manufacturer and factors influencing performance of gas microturbine[J]. Gas & Heat, 2007, 27 (3): 76- 79.
DOI |
|
17 | 张巍. 生物质气微型燃气轮机的特性研究[D]. 上海: 上海交通大学, 2009. |
ZHANG W. Study on the characteristics of biomass gas microturbine[D]. Shanghai: Shanghai Jiao Tong University, 2009. | |
18 | 欧阳艳艳, 张士杰, 赵丽凤, 等. 微型燃气轮机动态模拟与分析[J]. 工程热物理学报, 2012, 33 (3): 361- 365. |
OUYANG Y Y , ZHANG S J , ZHAO L F , et al. Dynamic simulation and analysis of micro-turbine[J]. Journal of Engineering Thermophysics, 2012, 33 (3): 361- 365. | |
19 | 邢畅. 微型燃机可调燃料供给燃烧室变工况特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
XING C. Variable working condition characteristics of adjustable fuel supply combustor on micro gas turbine[D]. Harbin: Harbin Institute of Technology, 2018. | |
20 | BOYCE M P . Gas turbine engineering handbook[M]. Amsterdam, Netherlands: Elsevier, 2011: 181- 185. |
21 | FORSTHOFFER W E . Forsthoffer's rotating equipment handbooks: reliability optimization through component condition monitoring and root cause analysis[M]. Amsterdam, Netherlands: Elsevier, 2005. |
22 | LIN P , DU X , SHI Y , et al. Modeling and controller design of a micro gas turbine for power generation[J]. ISA transactions, 2020, |
[1] | Changchun LIU, Chun GUAN, Kuijun GUO, Yufeng LI, Yiliang MA. Flutter Prediction Method for Long Blade of Steam Turbine [J]. Power Generation Technology, 2021, 42(4): 500-508. |
[2] | Shangnian CHEN, Luping LI, Shihai ZHANG, Minnan OUYANG, Ang FAN, Xiankui WEN. Research Progress of Vibration Fault Diagnosis Technology for Steam Turbine Generator Sets [J]. Power Generation Technology, 2021, 42(4): 489-499. |
[3] | Yuting WANG, Yanqi CHEN, Gang XU, Heng CHEN. Study on Structure Optimization of Exhaust Steam Passage of Steam Turbine in Large Coal-fired Power Station [J]. Power Generation Technology, 2021, 42(4): 464-472. |
[4] | Xiangling KONG, Jinglun FU. Computer-Vision Based on Three-dimensional Reconstruction Technology and Its Applications in Gas Turbine Industry [J]. Power Generation Technology, 2021, 42(4): 454-463. |
[5] | Ying CUI, Han ZHANG, Yuxi HUANG. Dynamic Characteristics Analysis of Circumferential Rod Fastening Rotor-Bearing System Considering Contact Stiffness [J]. Power Generation Technology, 2021, 42(4): 447-453. |
[6] | Bin QIU, Jinglun FU. Research Status of Gas Turbine Exhaust Diffuser [J]. Power Generation Technology, 2021, 42(4): 437-446. |
[7] | Mingliang BAI, Dongxue ZHANG, Jinfu LIU, Jiao LIU, Daren YU. Anomaly Detection of Gas Turbine Hot Components Based on Deep Autoencoder and Support Vector Data Description [J]. Power Generation Technology, 2021, 42(4): 422-430. |
[8] | Gang CHEN, Jinfeng LIU, Dazheng LI, Hua CHENG. Research and Application of Optimization Technology of Medium Speed Pulverizing System [J]. Power Generation Technology, 2021, 42(3): 363-373. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||