Power Generation Technology ›› 2020, Vol. 41 ›› Issue (6): 681-688.DOI: 10.12096/j.2096-4528.pgt.20055
• Power Generation and Enviromental Protection • Previous Articles Next Articles
Received:
2020-07-22
Published:
2020-12-31
Online:
2021-01-12
Supported by:
CLC Number:
Guohua QIU, Pengzhi XU. Analysis on Corrosion Causes of Induced Draft Fan Blade in Circulating Fluidized Bed Boiler With Mixed Burning Solid Waste Fuel[J]. Power Generation Technology, 2020, 41(6): 681-688.
参数 | 设计煤种 | 校核煤种 |
收到基碳Car/% | 57.28 | 52.30 |
收到基氢Har/% | 1.16 | 1.04 |
收到基氧Oar/% | 1.02 | 0.83 |
收到基氮Nar/% | 0.56 | 0.71 |
收到基硫St.ar/% | 0.98 | 1.12 |
全水分Mt/% | 9 | 12 |
收到基灰分Aar/% | 30 | 32 |
空干基水分Mad/% | 1.56 | 1.61 |
干燥无灰基挥发分Vdaf/% | 3.8 | 3.2 |
收到基低位发热量Qnet.ar/(MJ/kg) | 20.68 | 19.07 |
Tab. 1 Results of coal quality analysis
参数 | 设计煤种 | 校核煤种 |
收到基碳Car/% | 57.28 | 52.30 |
收到基氢Har/% | 1.16 | 1.04 |
收到基氧Oar/% | 1.02 | 0.83 |
收到基氮Nar/% | 0.56 | 0.71 |
收到基硫St.ar/% | 0.98 | 1.12 |
全水分Mt/% | 9 | 12 |
收到基灰分Aar/% | 30 | 32 |
空干基水分Mad/% | 1.56 | 1.61 |
干燥无灰基挥发分Vdaf/% | 3.8 | 3.2 |
收到基低位发热量Qnet.ar/(MJ/kg) | 20.68 | 19.07 |
参数 | 褐煤 | 烟煤 | 无烟煤 |
质量分数/% | 58 | 35 | 7 |
全水分Mt/% | 32.7 | 17.4 | 19.1 |
空干基灰分Aad/% | 6.0 | 17.0 | 35.6 |
空干基水分Mad/% | 20.6 | 7.4 | 4.1 |
空干基挥发分Vad/% | 36.9 | 28.8 | 7.2 |
空干基全硫St.ad/% | 0.6 | 0.7 | 1.0 |
收到基低位热值Qnet.ar/(MJ/kg) | 16.6 | 20.7 | 16.0 |
Tab. 2 Coal quality situation of boiler
参数 | 褐煤 | 烟煤 | 无烟煤 |
质量分数/% | 58 | 35 | 7 |
全水分Mt/% | 32.7 | 17.4 | 19.1 |
空干基灰分Aad/% | 6.0 | 17.0 | 35.6 |
空干基水分Mad/% | 20.6 | 7.4 | 4.1 |
空干基挥发分Vad/% | 36.9 | 28.8 | 7.2 |
空干基全硫St.ad/% | 0.6 | 0.7 | 1.0 |
收到基低位热值Qnet.ar/(MJ/kg) | 16.6 | 20.7 | 16.0 |
序号 | 成分名称 | 质量分数/% |
1 | 布料 | 68~70 |
2 | 毡类 | 17~19 |
3 | 塑料 | 5~8 |
4 | 橡胶 | 6~9 |
5 | 无机物 | 2.0~2.5 |
6 | 小分子有机物 | 1~2 |
Tab. 3 Component parts of solid waste fuel
序号 | 成分名称 | 质量分数/% |
1 | 布料 | 68~70 |
2 | 毡类 | 17~19 |
3 | 塑料 | 5~8 |
4 | 橡胶 | 6~9 |
5 | 无机物 | 2.0~2.5 |
6 | 小分子有机物 | 1~2 |
序号 | 组分 | 板结灰 | 粉煤灰 | 脱硫灰 |
1 | Na | 0.381 | 1.190 | 0.287 |
2 | Mg | 1.400 | 3.040 | 2.150 |
3 | Al | 12.000 | 14.400 | 4.990 |
4 | Si | 23.200 | 28.200 | 11.300 |
5 | P | 0.232 | 0.303 | 0.104 |
6 | S | 17.400 | 9.700 | 36.000 |
7 | Cl | 3.610 | 0.420 | 3.860 |
8 | K | 0.743 | 0.924 | 0.285 |
9 | Ca | 9.740 | 31.300 | 36.400 |
10 | Fe | 29.500 | 8.00 | 3.770 |
Tab. 4 Analysis results of ash composition %
序号 | 组分 | 板结灰 | 粉煤灰 | 脱硫灰 |
1 | Na | 0.381 | 1.190 | 0.287 |
2 | Mg | 1.400 | 3.040 | 2.150 |
3 | Al | 12.000 | 14.400 | 4.990 |
4 | Si | 23.200 | 28.200 | 11.300 |
5 | P | 0.232 | 0.303 | 0.104 |
6 | S | 17.400 | 9.700 | 36.000 |
7 | Cl | 3.610 | 0.420 | 3.860 |
8 | K | 0.743 | 0.924 | 0.285 |
9 | Ca | 9.740 | 31.300 | 36.400 |
10 | Fe | 29.500 | 8.00 | 3.770 |
1 | 张基标, 郝卫, 赵志军, 等. 锅炉烟气低温腐蚀的理论研究和工程实践[J]. 动力工程学报, 2011, 31 (10): 730- 733. |
ZHANG J B , HAO W , ZHAO Z J , et al. Theoretical and practical research on mechanism of low-temperature corrosion caused by boiler flue gas[J]. Journal of Chinese Society of Power Engineering, 2011, 31 (10): 730- 733. | |
2 | 陈招妹, 刘含笑, 崔盈, 等. 燃煤电厂烟气中SO3的生成、危害、测试及排放特征研究[J]. 发电技术, 2019, 40 (6): 564- 569. |
CHEN Z M , LIU H X , CUI Y , et al. Study on generation, hazard, testing and emission characteristics of SO3 in flue gas of coal-fired power plants[J]. Power Generation Technology, 2019, 40 (6): 564- 569. | |
3 | 陈建江, 童家麟. 发电厂电动引风机及其烟道低温腐蚀分析与控制[J]. 浙江电力, 2019, 38 (2): 94- 97. |
CHEN J J , TONG J L . Analysis and control of low-temperature corrosion of electric induced draftfan and flue in power plants[J]. Zhejiang Electric Power, 2019, 38 (2): 94- 97. | |
4 | 陈啸, 徐威. 垃圾焚烧电厂离心式引风机受尾气腐蚀振动故障处理[J]. 山西电力, 2019, (5): 56- 58. |
CHEN X , XU W . Vibration treatment of centrifugal induced draft fan by tail gas corrosion in waste incineration power plant[J]. Shanxi Electric Power, 2019, (5): 56- 58. | |
5 |
LI X , ZHANG C , LIA Y , et al. The status of municipal solid waste incineration (MSWI) in China and its clean development[J]. Energy Procedia, 2016, 104, 498- 503.
DOI |
6 |
张世鑫, 蔡芳龙, 陈玉洪, 等. 大型CFB锅炉掺烧生物质及城市固废可行性分析[J]. 中国资源综合利用, 2017, 35 (7): 64- 68.
DOI |
ZHANG S X , CAI F L , CHEN Y H , et al. Feasibility analysis of large CFB boiler mixed burning biomass fuels and urban solid waste[J]. China Resources Comprehensive Utilization, 2017, 35 (7): 64- 68.
DOI |
|
7 | 张世鑫, 许燕飞, 吕勇, 等. 垃圾衍生燃料焚烧技术研究[J]. 洁净煤技术, 2019, 25 (6): 184- 191. |
ZHANG S X , XU Y F , LÜ Y , et al. Research on waste derived fuel incineration technology[J]. Clean Coal Technology, 2019, 25 (6): 184- 191. | |
8 | 王利军. 垃圾焚烧发电系统优化及综合利用技术[J]. 发电技术, 2019, 40 (4): 377- 381. |
WANG L J . Optimization and comprehensive utilization technology of waste incineration power generation system[J]. Power Generation Technology, 2019, 40 (4): 377- 381. | |
9 | 房德职, 李克勋. 国内外生活垃圾焚烧发电技术进展[J]. 发电技术, 2019, 40 (4): 367- 376. |
FANG D Z , LI K X . An overview of power generation from municipal solid waste incineration plants at home and abroad[J]. Power Generation Technology, 2019, 40 (4): 367- 376. | |
10 | 李东雄, 徐鸿恩, 牛拥军, 等. 300 MW节能型循环流化床锅炉SO3生成和排放试验研究[J]. 动力工程学报, 2020, 40 (6): 447- 453. |
LI D X , XU H E , NIU Y J , et al. Experimental study on SO3 generation and emission of a 300 MW energy saving CFB boiler[J]. Journal of Chinese Society of Power Engineering, 2020, 40 (6): 447- 453. | |
11 | 曾韵洁.半干法烟气脱硫协同脱除球团烟气中SO3及Hg0的实验研究[D].北京: 华北电力大学, 2019. |
ZENG Y J.Experimental study on co-removal of SO3 and Hg0 from pellet flue gas by semi-dry flue gas desulfurization[D].Beijing: North China Electric Power University, 2019. | |
12 | 柯玉娟, 陈泉源, 张立娜. 城市污水污泥资源化利用途径探讨[J]. 中国资源综合利用, 2008, (8): 13- 16. |
KE Y J , CHEN Q Y , ZHANG L N . Study on the technique of utilization of municipal sewage sludge[J]. China Resources Comprehensive Utilization, 2008, (8): 13- 16. | |
13 | 蒋旭光, 徐旭, 严建华, 等. 我国煤中氯含量分布特性的试验研究[J]. 煤炭转化, 2001, 24 (2): 58- 61. |
JIANG X G , XU X , YAN J H , et al. Experimental research of Cl distribution properties in Chinese coal[J]. Coal Conversion, 2001, 24 (2): 58- 61. | |
14 | 李廉明, 金建荣, 孙坚, 等. 生物质循环流化床锅炉空气预热器积灰分析[J]. 设备管理与维修, 2017, 50 (4): 99- 101. |
LI L M , JIN J R , SUN J , et al. Ash accumulation analysis of air preheater in biomass circulating fluidized bed boiler[J]. Equipment Management and Maintenance, 2017, 50 (4): 99- 101. | |
15 | 董锐锋, 吴文龙, 王锋涛, 等. 燃煤电厂超低排放改造后烟道氯化铵结晶原因分析及对策[J]. 热力发电, 2018, 47 (3): 128- 134. |
DONG R F , WU W L , WANG F T , et al. Reason analysis and countermeasures of ammonium chloride crystallization in the flue system of coal-fired power plants after ultra-low emission transformation[J]. Thermal Power Generation, 2018, 47 (3): 128- 134. | |
16 | 刘敬勇, 黄李茂, 陈佳聪, 等. 污泥掺烧过程中Cl/S/P/矿物质的热交互作用对Cd迁移转化行为的影响[J]. 环境科学学报, 2016, 36 (12): 4407- 4420. |
LIU J Y , HUANG L M , CHEN J C , et al. Effects of the interactions of Cl, sulfur, phosphorus and minerals during sewage sludge co-incineration on the migration and transformation of Cd[J]. Acta Scientiae Circumstantiae, 2016, 36 (12): 4407- 4420. | |
17 | FLEIG D , ANDERSSON K , NORMANN F , et al. SO3 formation under oxyfuel combustion conditions[J]. Industrial & Engineering Chemistry Research, 2011, 50 (50): 8505- 8514. |
18 | 王启民, 张小辉, 杨海瑞, 等. 生物质灰在低温受热面上的沉积点腐蚀机理分析[J]. 工业锅炉, 2011, (2): 1- 4. |
WANG Q M , ZHANG X H , YANG H R , et al. Mechanism of biomass ash fouling and pit corrosion in the low temperature surface[J]. Industrial Boiler, 2011, (2): 1- 4. | |
19 | 赵峥峥, 王遥, 刘斌, 等. 三元混合氯化盐NaCl-KCl-MgCl2对合金的腐蚀特性实验研究[J]. 发电技术, 2018, 39 (6): 561- 565. |
ZHAO Z Z , WANG Y , LIU B , et al. Experimental study on corrosion characteristics of ternary mixed chloride salt NaCl-KCl-MgCl2[J]. Power Generation Technology, 2018, 39 (6): 561- 565. | |
20 | 祝建中, 陈烈强, 甘轲. 垃圾焚烧气氛中碱金属氯化物的腐蚀机理[J]. 华南理工大学学报(自然科学版), 2005, 33 (3): 78- 82. |
ZHU J Z , CHEN L Q , GAN G . Corrosion mechanism of alkali chloride during the incineration of refuse[J]. Journal of South China University of Technology (Natural Science), 2005, 33 (3): 78- 82. |
[1] | Yong DING. Research on Deep Peak Shaving Performance of 1 000 MW Ultra-Supercritical Coal-Fired Boiler [J]. Power Generation Technology, 2024, 45(3): 382-391. |
[2] | Huasong DAI, Shaoxu PU, Guoxu CHAI, Li JIN, Weiping CHEN, Mingliang XIE. Research and Application of Deep Peak Shaving of 350 MW Supercritical Fluidized Bed Unit [J]. Power Generation Technology, 2024, 45(3): 401-411. |
[3] | Zhongming GAO, Deao ZHU, Yujia CHEN, Sanju LIU, Qinhui WANG. Experimental Study on the Air Gasification Characteristics of Agricultural and Forestry Waste in a Circulating Fluidized Bed [J]. Power Generation Technology, 2024, 45(3): 535-544. |
[4] | Sihai ZHANG, Chaoran LI, Guangliang WAN, Yinxue LIU, Hainan XU, Zhong HUANG, Hairui YANG. Deep Peak Shaving Technology for 330 MW Circulating Fluidized Bed Boiler [J]. Power Generation Technology, 2024, 45(2): 199-206. |
[5] | Qigang DENG, Zhuo LÜ, You SHI, Jiayi LU, Xu ZHOU, Aoyu WANG, Dong YANG. Safety Calculation and Analysis of Water Wall for a 700 MW Ultra-Supercritical Circulating Fluidized Bed Boiler Without External Bed After Power Failure [J]. Power Generation Technology, 2024, 45(2): 240-249. |
[6] | Xiaohe XIONG, Falin CHEN, Renhui RUAN, Houzhang TAN, Yansen LI. Experiment on Multi-Component Synchronous Test of Reducing Atmosphere Adjacent to Water Wall of High Temperature Corrosion Boiler [J]. Power Generation Technology, 2023, 44(6): 800-808. |
[7] | Zhongrong LIANG, Maowei LAN, Guo ZHENG, Rongqiang HE, Keyang QU, Yunhua GAN. Study on Multi-Objective Optimization of High-Efficiency and Low-NO x Emissions of Power Station Boilers Based on Least Squares Support Vector Machines [J]. Power Generation Technology, 2023, 44(6): 809-816. |
[8] | Lin WANG. Research on Closed Cycle Pipe Blowing Technology of 5 MW Supercritical Carbon Dioxide Unit Boiler [J]. Power Generation Technology, 2023, 44(5): 731-737. |
[9] | Zhonghao DONG, Xiaofeng LU, Lichao SHI, Zengzeng YANG, Fansheng KONG, Peng WANG, Guoqiang LIN, Peng ZHAO. Influence of Thermal Inertia of Refractory Material in Furnace on the Peak Regulating Rate of Circulating Fluidized Bed Boiler [J]. Power Generation Technology, 2023, 44(4): 514-524. |
[10] | Lifeng ZHANG, Jing LI, Zhi WANG. Reconstruction of Temperature Distribution by Acoustic Tomography Based on Principal Component Analysis and Deep Neural Network [J]. Power Generation Technology, 2023, 44(3): 399-406. |
[11] | Shengli LIU, Haijun ZHANG, Jian CHENG, Yuxiu ZHONG, Jun XU, Long JIANG, Yi WANG, Sheng SU, Song HU, Jun XIANG. Research on Slagging and High Temperature Corrosion Prevention and Control of a 1 000 MW Ultra Supercritical Double Tangentially Fired Boiler [J]. Power Generation Technology, 2023, 44(2): 171-182. |
[12] | Hongjian WANG, Haiyang WANG, Hao KONG, Tuo ZHOU, Man ZHANG, Hairui YANG. Retrofitting Strategy and Operating Technology of Pure Burning Zhundong Coal in a 135 MW Circulating Fluidized Bed Boiler [J]. Power Generation Technology, 2022, 43(6): 918-926. |
[13] | Jun LIU, Yi DEND, Yanxi YANG, Yonggui WEI, Yanhui XUE, Wenwen SHI. Ash Accumulation State Identification for Infrared Compensation Images of Air Preheater Rotor Based on Deep Learning Method [J]. Power Generation Technology, 2022, 43(3): 510-517. |
[14] | Xiufeng YAN, Ke ZONG, Xiunian HE, Lin GAO, Bin QIN, Mingkun WANG, Wentao HUI. Research on Steam Temperature Control Strategy in Peak Regulation of 1 000 MW Coal Power Unit [J]. Power Generation Technology, 2022, 43(3): 518-522. |
[15] | Yuan LI, Zhicheng GUO, Xiaochao MENG, Kefeng CHEN, Liming REN, Rui MAO, Kefa CEN. Design of an Online Monitoring System for Combustion Field Parameter in a Furnace Based on Tunable Diode Laser Absorption Spectroscopy Technology [J]. Power Generation Technology, 2022, 43(2): 353-361. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||