Power Generation Technology ›› 2025, Vol. 46 ›› Issue (5): 939-949.DOI: 10.12096/j.2096-4528.pgt.24239
• New Energy • Previous Articles Next Articles
Jianyong LI1, Zemeng LANG1, Chongyang WANG2, Hailiang ZHAO1, Chengwei JIANG1, Ruiling XU2, Xi HU3, Qingmao MENG2, Huaisen LI2, Shijie XU4, Shuangying WU4
Received:2024-11-14
Revised:2024-12-19
Published:2025-10-31
Online:2025-10-23
Supported by:CLC Number:
Jianyong LI, Zemeng LANG, Chongyang WANG, Hailiang ZHAO, Chengwei JIANG, Ruiling XU, Xi HU, Qingmao MENG, Huaisen LI, Shijie XU, Shuangying WU. Analytical Model and Experimental Validation of Optical-Thermal-Electrical Performance of Bifacial Photovoltaic Systems[J]. Power Generation Technology, 2025, 46(5): 939-949.
| 参数 | 取值 |
|---|---|
| 电池单元数量/个 | 156 |
| 电池单元长度Δl/mm | 158.75 |
| 电池单元宽度Δw/mm | 79.375 |
| 电池单元间距/mm | 2.1(左右);1.53(前后) |
| 玻璃盖板厚度/mm | 4.2 |
| EVA厚度/mm | 0.5 |
| 晶硅电池厚度/mm | 0.4 |
| 铝边框厚度/mm | 4和9 |
| 开路电压/V | 53.37 |
| 短路电流/A | 10.52 |
| 最大功率/W | 445 |
| 最大工作电压/V | 43.93 |
| 最大工作电流/A | 10.13 |
| 双面因子/% | 65 |
| 正面发电效率ηref.f/% | 20.59 |
| 背面发电效率ηref.r/% | 13.38 |
| 温度影响系数δ/% | 0.35 |
Tab. 1 Structural parameters of BPV panel and performance parameters under standard test conditions
| 参数 | 取值 |
|---|---|
| 电池单元数量/个 | 156 |
| 电池单元长度Δl/mm | 158.75 |
| 电池单元宽度Δw/mm | 79.375 |
| 电池单元间距/mm | 2.1(左右);1.53(前后) |
| 玻璃盖板厚度/mm | 4.2 |
| EVA厚度/mm | 0.5 |
| 晶硅电池厚度/mm | 0.4 |
| 铝边框厚度/mm | 4和9 |
| 开路电压/V | 53.37 |
| 短路电流/A | 10.52 |
| 最大功率/W | 445 |
| 最大工作电压/V | 43.93 |
| 最大工作电流/A | 10.13 |
| 双面因子/% | 65 |
| 正面发电效率ηref.f/% | 20.59 |
| 背面发电效率ηref.r/% | 13.38 |
| 温度影响系数δ/% | 0.35 |
| 参数 | 正面 玻璃 | EVA | 晶硅 电池 | 背面 玻璃 | 铝边框(铝) |
|---|---|---|---|---|---|
| 热导率/[W/(m⋅K)] | 0.93 | 0.35 | 150 | 0.93 | 204 |
| 密度/(kg/m3) | 2 530 | 960 | 2 328 | 2 530 | 2 710 |
| 比热容/[J/(kg⋅K)] | 850 | 2 090 | 677 | 850 | 910 |
| 吸收率 | — | — | 0.93 | — | — |
| 发射率 | 0.85 | — | — | 0.85 | 0.5 |
| 透射率 | 0.935 | 1 | — | 0.915 | — |
Tab. 2 Physical properties of BPV panel
| 参数 | 正面 玻璃 | EVA | 晶硅 电池 | 背面 玻璃 | 铝边框(铝) |
|---|---|---|---|---|---|
| 热导率/[W/(m⋅K)] | 0.93 | 0.35 | 150 | 0.93 | 204 |
| 密度/(kg/m3) | 2 530 | 960 | 2 328 | 2 530 | 2 710 |
| 比热容/[J/(kg⋅K)] | 850 | 2 090 | 677 | 850 | 910 |
| 吸收率 | — | — | 0.93 | — | — |
| 发射率 | 0.85 | — | — | 0.85 | 0.5 |
| 透射率 | 0.935 | 1 | — | 0.915 | — |
| 仪器型号 | 量程 | 精度 |
|---|---|---|
| TBQ-2C型辐照表 | 0~2 000 W/m2 | <5% |
| 华盛昌DT-1037型辐照表 | 0~2 000 W/m2 | <5% |
| K型热电偶 | 0~600 ℃ | — |
| Agilent 34970A型数据采集仪 | 0.000 2~1 000 V,0~1 A | — |
| PROVA210型I-V曲线测试仪 | 0~60 V,0.01~12 A | ±1% |
| SN-3000-FSJT-GPRS型风速仪 | 0~70 m/s | ±0.1 m/s |
| SN-3000-FXJT-N01型风向仪 | 8个指示方向 | — |
Tab. 3 Testing instrument parameters
| 仪器型号 | 量程 | 精度 |
|---|---|---|
| TBQ-2C型辐照表 | 0~2 000 W/m2 | <5% |
| 华盛昌DT-1037型辐照表 | 0~2 000 W/m2 | <5% |
| K型热电偶 | 0~600 ℃ | — |
| Agilent 34970A型数据采集仪 | 0.000 2~1 000 V,0~1 A | — |
| PROVA210型I-V曲线测试仪 | 0~60 V,0.01~12 A | ±1% |
| SN-3000-FSJT-GPRS型风速仪 | 0~70 m/s | ±0.1 m/s |
| SN-3000-FXJT-N01型风向仪 | 8个指示方向 | — |
| [1] | 肖瑶,钮文泽,魏高升,等 .太阳能光伏/光热技术研究现状与发展趋势综述[J].发电技术,2022,43(3):392-404. doi:10.12096/j.2096-4528.pgt.21145 |
| XIAO Y, NIU W Z, WEI G S,et al .Review on research status and developing tendency of solar photovoltaic/thermal technology[J].Power Generation Technology,2022,43(3):392-404. doi:10.12096/j.2096-4528.pgt.21145 | |
| [2] | 李英峰,张涛,张衡,等 .太阳能光伏光热高效综合利用技术[J].发电技术,2022,43(3):373-391. doi:10.12096/j.2096-4528.pgt.22052 |
| LI Y F, ZHANG T, ZHANG H,et al .Efficient and comprehensive photovoltaic/photothermal utilization technologies for solar energy[J].Power Generation Technology,2022,43(3):373-391. doi:10.12096/j.2096-4528.pgt.22052 | |
| [3] | 刘洋,章子潇,赵贤根,等 .进气流量对滑动电弧放电分解CO2的瞬态电-光-热特性和转化性能的影响[J].电工技术学报,2024,39(23):7616-7627. |
| LIU Y, ZHANG Z X, ZHAO X G,et al .The effect of inlet flow rate on the transient electrical-optical-thermal characteristics and conversion performance of CO2 decomposition in gliding arc discharges[J].Transactions of China Electrotechnical Society,2024,39(23):7616-7627. | |
| [4] | PATEL M T, KHAN M R, SUN X S,et al .A worldwide cost-based design and optimization of tilted bifacial solar farms[J].Applied Energy,2019,247:467-479. doi:10.1016/j.apenergy.2019.03.150 |
| [5] | GU W B, MA T, AHMED S,et al .A comprehensive review and outlook of bifacial photovoltaic (BPV) technology[J].Energy Conversion and Management,2020,223:113283. doi:10.1016/j.enconman.2020.113283 |
| [6] | KATSAOUNIS T, KOTSOVOS K, GEREIGE I,et al .Performance assessment of bifacial c-Si PV modules through device simulations and outdoor measurements[J].Renewable Energy,2019,143:1285-1298. doi:10.1016/j.renene.2019.05.057 |
| [7] | ABOU AKROUCH M, CHAHINE K, FARAJ J,et al .Advancements in cooling techniques for enhanced efficiency of solar photovoltaic panels:a detailed comprehensive review and innovative classification[J].Energy and Built Environment,2025,6(2):248-276. doi:10.1016/j.enbenv.2023.11.002 |
| [8] | SAHU P K, ROY J N, CHAKRABORTY C .Performance assessment of a bifacial PV system using a new energy estimation model[J].Solar Energy,2023,262:111818. doi:10.1016/j.solener.2023.111818 |
| [9] | MANISCALCO M P, LONGO S, MICCICHÈ G,et al .A critical review of the environmental performance of bifacial photovoltaic panels[J].Energies,2024,17(1):226. doi:10.3390/en17010226 |
| [10] | MANUEL LONGARES J, GARCÍA-JIMÉNEZ A, GARCÍA-POLANCO N .Multiphysics simulation of bifacial photovoltaic modules and software comparison[J].Solar Energy,2023,257:155-163. doi:10.1016/j.solener.2023.04.005 |
| [11] | ERNST M, CONECHADO G E J, ASSELINEAU C A .Accelerating the simulation of annual bifacial illumination of real photovoltaic systems with ray tracing[J].iScience,2022,25(1):103698. doi:10.1016/j.isci.2021.103698 |
| [12] | ZHAO C R, XIAO J W, YU Y J,et al .Accurate shading factor and mismatch loss analysis of bifacial HSAT systems through ray-tracing modeling[J].Solar Energy Advances,2021,1:100004. doi:10.1016/j.seja.2021.100004 |
| [13] | MA T, KAZEMIAN A, HABIBOLLAHZADE A,et al .A comparative study on bifacial photovoltaic/thermal modules with various cooling methods[J].Energy Conversion and Management,2022,263:115555. doi:10.1016/j.enconman.2022.115555 |
| [14] | LORENZO E .On the historical origins of bifacial PV modelling[J].Solar Energy,2021,218:587-595. doi:10.1016/j.solener.2021.03.006 |
| [15] | GARROD A, GHOSH A .A review of bifacial solar photovoltaic applications[J].Frontiers in Energy,2023,17(6):704-726. doi:10.1007/s11708-023-0903-7 |
| [16] | LIU B Y H, JORDAN R C .The long-term average performance of flat-plate solar-energy collectors:with design data for the U.S.,its outlying possessions and Canada[J].Solar Energy,1963,7(2):53-74. doi:10.1016/0038-092x(63)90006-9 |
| [17] | DUFFIE J A, BECKMAN W A .Solar engineering of thermal processes[M].3rd ed.New Jersey:Wiley-Interscience Publication,2006. |
| [18] | PEREZ R, STEWART R, ARBOGAST C,et al .An anisotropic hourly diffuse radiation model for sloping surfaces:description,performance validation,site dependency evaluation[J].Solar Energy,1986,36(6):481-497. doi:10.1016/0038-092x(86)90013-7 |
| [19] | GU W, MA T, LI M,et al .A coupled optical-electrical-thermal model of the bifacial photovoltaic module[J].Applied Energy,2020,258:114075. doi:10.1016/j.apenergy.2019.114075 |
| [20] | ANDRES C, RUBEN C, DAVID G,et al .Time-varying,ray tracing irradiance simulation approach for photovoltaic systems in complex scenarios with decoupled geometry,optical properties and illumination conditions[J].Progress in Photovoltaics:Research and Applications,2023,31(2):134-148. doi:10.1002/pip.3614 |
| [21] | MARION B, MACALPINE S, DELINE C,et al .A practical irradiance model for bifacial PV modules[C]//2017 IEEE 44th Photovoltaic Specialist Conference (PVSC).Washington,DC:IEEE,2017:1-8. doi:10.1109/pvsc.2017.8366263 |
| [22] | SHOUKRY I, LIBAL J, KOPECEK R,et al .Modelling of bifacial gain for stand-alone and in-field installed bifacial PV modules[J].Energy Procedia,2016,92:600-608. doi:10.1016/j.egypro.2016.07.025 |
| [23] | Sandia national laboratories .Sandia cell temperature model[EB/OL].(2016-06-01)[2024-10-20].. |
| [24] | FAIMAN D .Assessing the outdoor operating temperature of photovoltaic modules[J].Progress in Photovoltaics:Research and Applications,2008,16(4):307-315. doi:10.1002/pip.813 |
| [25] | STINE WB GM .Power from the sun[EB/OL]. (2014-04-03)[2024-10-20].. |
| [26] | REDDY K S, BALAJI S, SUNDARARAJAN T .Estimation of heat losses due to wind ef fects from linear parabolic secondary reflector-receiver of solar LFR module[J].Energy,2018,150:410-433. doi:10.1016/j.energy.2018.02.125 |
| [27] | GARG A,RAY B, JAIN S .Development of Nusselt number correlation for solar CPC with a tubular receiver[J].Thermal Science and Engineering Progress,2023,37:101553. doi:10.1016/j.tsep.2022.101553 |
| [28] | REDDY K S, PARTHIBAN A, MALLICK T K .Numerical modeling of heat losses in a line focusing solar compound parabolic concentrator with planar absorber[J].Applied Thermal Engineering,2020,181:115938. doi:10.1016/j.applthermaleng.2020.115938 |
| [29] | XU S J, WU S Y, XIAO L,et al .Performance assessment of compound parabolic concentrating photovoltaic system based on optical-thermal-electrical-environmental coupling[J].Energy,2023,284:129241. doi:10.1016/j.energy.2023.129241 |
| [30] | HOLMAN J P .Experimental methods for engineers[M].6th ed.New York:McGraw-Hill,1994. doi:10.1093/oso/9780198163404.001.0001 |
| [1] | Yi CHEN, Yingxin XU, Dongjie XU, Xiang GAO. Optimal Configuration and Performance Analysis of Terminal Multi-energy Complementary System [J]. Power Generation Technology, 2022, 43(6): 823-833. |
| [2] | YU Qi-Yun, ZOU Xiao-hui. Application of Optimal Arrangement of Bionic Double Connected Tree Bundle in Power Plant [J]. Power Generation Technology, 2017, 38(4): 33-35. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||