Power Generation Technology ›› 2021, Vol. 42 ›› Issue (3): 329-335.DOI: 10.12096/j.2096-4528.pgt.20050
• Power Generation and Enviromental Protection • Previous Articles Next Articles
Received:
2020-06-29
Published:
2021-06-30
Online:
2021-06-29
Supported by:
CLC Number:
Lifeng ZHANG, Yu MIAO. Study of Probe Distribution for Furnace Acoustic Tomographic Temperature Measurement[J]. Power Generation Technology, 2021, 42(3): 329-335.
参数 | 分布方式 | |||||
a | b | c | d | e | f | |
Emse | 0.020 0 | 0.020 1 | 0.032 7 | 0.043 8 | 0.012 3 | 0.015 0 |
Re | 0.992 4 | 0.992 3 | 0.983 1 | 0.968 7 | 0.996 2 | 0.994 2 |
Kem | 49.620 | 49.368 | 30.064 | 22.116 | 80.991 | 66.280 |
Tab. 1 Reconstruction error of single-peak bias temperature distribution
参数 | 分布方式 | |||||
a | b | c | d | e | f | |
Emse | 0.020 0 | 0.020 1 | 0.032 7 | 0.043 8 | 0.012 3 | 0.015 0 |
Re | 0.992 4 | 0.992 3 | 0.983 1 | 0.968 7 | 0.996 2 | 0.994 2 |
Kem | 49.620 | 49.368 | 30.064 | 22.116 | 80.991 | 66.280 |
参数 | 分布方式 | |||||
a | b | c | d | e | f | |
Emse | 0.027 3 | 0.027 3 | 0.035 5 | 0.051 4 | 0.023 5 | 0.019 3 |
Re | 0.980 1 | 0.979 7 | 0.978 4 | 0.951 5 | 0.986 0 | 0.989 0 |
Kem | 35.901 | 35.886 | 27.560 | 18.511 | 41.957 | 51.243 |
Tab. 2 Reconstruction error of double-peak symmetrical temperature distribution
参数 | 分布方式 | |||||
a | b | c | d | e | f | |
Emse | 0.027 3 | 0.027 3 | 0.035 5 | 0.051 4 | 0.023 5 | 0.019 3 |
Re | 0.980 1 | 0.979 7 | 0.978 4 | 0.951 5 | 0.986 0 | 0.989 0 |
Kem | 35.901 | 35.886 | 27.560 | 18.511 | 41.957 | 51.243 |
参数 | 分布方式 | |||||
a | b | c | d | e | f | |
Emse | 0.097 4 | 0.078 8 | 0.084 4 | 0.100 7 | 0.059 5 | 0.039 6 |
Re | 0.897 6 | 0.917 6 | 0.921 2 | 0.842 0 | 0.948 6 | 0.974 6 |
Kem | 9.215 | 11.644 | 10.914 | 8.361 | 15.942 | 24.611 |
Tab. 3 Four-peak temperature distribution reconstruction error
参数 | 分布方式 | |||||
a | b | c | d | e | f | |
Emse | 0.097 4 | 0.078 8 | 0.084 4 | 0.100 7 | 0.059 5 | 0.039 6 |
Re | 0.897 6 | 0.917 6 | 0.921 2 | 0.842 0 | 0.948 6 | 0.974 6 |
Kem | 9.215 | 11.644 | 10.914 | 8.361 | 15.942 | 24.611 |
分布 | a | b | c | d | e | f |
31.578 | 32.299 | 22.846 | 16.329 | 46.296 | 47.378 |
Tab. 4 Mean value of comprehensive index under uniform air distribution
分布 | a | b | c | d | e | f |
31.578 | 32.299 | 22.846 | 16.329 | 46.296 | 47.378 |
分布 | a | b | c | d | e | f |
8.6885 | 8.9742 | 8.0882 | 7.3268 | 9.9834 | 10.5210 |
Tab. 5 Mean value of comprehensive index under flue gas distribution
分布 | a | b | c | d | e | f |
8.6885 | 8.9742 | 8.0882 | 7.3268 | 9.9834 | 10.5210 |
1 |
LIU X R , BANSAL R C . Integrating multi-objective optimization with computational fluid dynamics to optimize boiler combustion process of a coal fired power plant[J]. Applied Energy, 2014, 130, 658- 699.
DOI |
2 |
李成志, 邵富群, 阚哲. 基于广义倒谱的相关算法在声学温度检测系统中的应用[J]. 计量学报, 2013, 34 (1): 22- 26.
DOI |
LI C Z , SHAO F Q , KAN Z . Application in acoustic pyrometer system based on generalized cepstrum correlation algorithm[J]. Acta Metrological Sinica, 2013, 34 (1): 22- 26.
DOI |
|
3 |
LIU S , LIU S , REN T . Acoustic tomography reconstruction method for the temperature distribution measurement[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66 (8): 1936- 1945.
DOI |
4 |
HOLSTEIN P , RAABE A , MULLER R , et al. Acoustic tomography on the basis of travel-time measurement[J]. Measurement Science and Technology, 2004, 15 (7): 1420- 1428.
DOI |
5 | 杨柳. 基于环形阵列的超声层析检测方法[D]. 北京: 北京理工大学, 2015. |
YANG L. Ultrasonic tomography detection method based on ring array[D]. Beijing: Beijing Institute of Technology, 2015. | |
6 | KONG Q , JIANG G S , LIU Y C , et al. Numerical and experimental study on temperature field reconstruction based on acoustic tomography[J]. Applied Thermal Engineering, 2020, 170, 256- 267. |
7 | BARTH M , RAABE A . Acoustic tomographic imaging of temperature and flow fields in air[J]. Measurement Science and Technology, 2011, 22 (3): 351- 360. |
8 |
王善辉, 颜华, 李爽. 声学层析成像传感器布局设计[J]. 中国科技论文, 2014, 9 (4): 413- 416.
DOI |
WANG S H , YAN H , LI S . Sensor layout design of acoustic computer tomography[J]. China Science Paper, 2014, 9 (4): 413- 416.
DOI |
|
9 | 王善辉. 声学层析成像反问题求解及温度场重建算法研究[D]. 沈阳: 沈阳工业大学, 2014. |
WANG S H. Inverse problem solving of acoustic tomography and reconstruction algorithm of temperature field[D]. Shenyang: Shenyang University of Technology, 2014. | |
10 |
刘岩. 温度场超声传感成像算法研究[J]. 现代信息科技, 2018, 2 (12): 146- 149.
DOI |
LIU Y . Comparative research on the reconstruction algorithms for acoustic tomography of temperature field[J]. Modern Information Technology, 2018, 2 (12): 146- 149.
DOI |
|
11 | 王善辉, 颜华, 李爽. 声学CT储粮温度监测收发器阵列设计[J]. 沈阳工业大学学报, 2014, 36 (5): 561- 566. |
WANG S H , YAN H , LI S . Design for transceiver array of temperature in stored grain monitored by acoustic CT[J]. Journal of Shenyang University of Technology, 2014, 36 (5): 561- 566. | |
12 | RUI X J , QING Y X . Two-dimensional temperature field distribution reconstruction based on least square method and radial basis function approximation[J]. Mathematical Problems in Engineering, 2017, 162, 1- 7. |
13 | 李良梁. 影响声学法测温准确度因素的研究[D]. 沈阳: 东北大学, 2017. |
LI L L. Study on factors affecting the accuracy of temperature measurement by acoustic method[D]. Shenyang: Northeastern University, 2017. | |
14 | 李芝兰. 基于声层析成像的温度场重建技术研究[D]. 沈阳: 沈阳工业大学, 2007. |
LI Z L. Research on temperature field reconstruction based on acoustic tomography[D]. Shenyang: Shenyang University of Technology, 2007. | |
15 | 王然, 安连锁, 沈国清, 等. 基于正则化SVD算法的三维温度场声学重建[J]. 计算物理, 2015, 32 (2): 195- 201. |
WANG R , AN L S , SHEN G Q , et al. Three-dimensional temperature field reconstruction with acoustics based on regularized SVD algorithm[J]. Chinese Journal of Computational Physics, 2015, 32 (2): 195- 201. | |
16 |
陈德运, 李乐天, 胡海涛. 基于迭代Tikhonov正则化的电容层析成像图像重建[J]. 哈尔滨理工大学学报, 2009, 14 (2): 1- 3.
DOI |
CHEN D Y , LI L T , HU H T . Image reconstruction algorithm based on iterated Tikhonov regularization for electrical capacitance tomography[J]. Journal of Harbin University of Science and Technology, 2009, 14 (2): 1- 3.
DOI |
|
17 | 刘厦, 刘石. 基于声学层析成像的炉内温度场重建算法研究[J]. 动力工程学报, 2017, 37 (7): 525- 532. |
LIU X , LIU S . Research on temperature distribution reconstruction of a boiler based on acoustic tomography[J]. Journal of Chinese Society of Power Engineering, 2017, 37 (7): 525- 532. | |
18 | 王然. 炉膛三维温度场声学测量及其在燃烧优化中的应用研究[D]. 北京: 华北电力大学, 2015. |
WANG R. Acoustic measurement of three dimensional temperature field in furnace and its application in combustion optimization[D]. Beijing: North China Electric Power University, 2015. | |
19 | ZHOU X Z , DONG C L , ZHAO C P , et al. Temperature-field reconstruction algorithm based on reflected sigmoidal radial basis function and QR decomposition[J]. Applied Thermal Engineering, 2020, 171, 148- 157. |
[1] | Yong DING. Research on Deep Peak Shaving Performance of 1 000 MW Ultra-Supercritical Coal-Fired Boiler [J]. Power Generation Technology, 2024, 45(3): 382-391. |
[2] | Sihai ZHANG, Chaoran LI, Guangliang WAN, Yinxue LIU, Hainan XU, Zhong HUANG, Hairui YANG. Deep Peak Shaving Technology for 330 MW Circulating Fluidized Bed Boiler [J]. Power Generation Technology, 2024, 45(2): 199-206. |
[3] | Qigang DENG, Zhuo LÜ, You SHI, Jiayi LU, Xu ZHOU, Aoyu WANG, Dong YANG. Safety Calculation and Analysis of Water Wall for a 700 MW Ultra-Supercritical Circulating Fluidized Bed Boiler Without External Bed After Power Failure [J]. Power Generation Technology, 2024, 45(2): 240-249. |
[4] | Xiaohe XIONG, Falin CHEN, Renhui RUAN, Houzhang TAN, Yansen LI. Experiment on Multi-Component Synchronous Test of Reducing Atmosphere Adjacent to Water Wall of High Temperature Corrosion Boiler [J]. Power Generation Technology, 2023, 44(6): 800-808. |
[5] | Zhongrong LIANG, Maowei LAN, Guo ZHENG, Rongqiang HE, Keyang QU, Yunhua GAN. Study on Multi-Objective Optimization of High-Efficiency and Low-NO x Emissions of Power Station Boilers Based on Least Squares Support Vector Machines [J]. Power Generation Technology, 2023, 44(6): 809-816. |
[6] | Lin WANG. Research on Closed Cycle Pipe Blowing Technology of 5 MW Supercritical Carbon Dioxide Unit Boiler [J]. Power Generation Technology, 2023, 44(5): 731-737. |
[7] | Lifeng ZHANG, Jing LI, Zhi WANG. Reconstruction of Temperature Distribution by Acoustic Tomography Based on Principal Component Analysis and Deep Neural Network [J]. Power Generation Technology, 2023, 44(3): 399-406. |
[8] | Shengli LIU, Haijun ZHANG, Jian CHENG, Yuxiu ZHONG, Jun XU, Long JIANG, Yi WANG, Sheng SU, Song HU, Jun XIANG. Research on Slagging and High Temperature Corrosion Prevention and Control of a 1 000 MW Ultra Supercritical Double Tangentially Fired Boiler [J]. Power Generation Technology, 2023, 44(2): 171-182. |
[9] | Hongjian WANG, Haiyang WANG, Hao KONG, Tuo ZHOU, Man ZHANG, Hairui YANG. Retrofitting Strategy and Operating Technology of Pure Burning Zhundong Coal in a 135 MW Circulating Fluidized Bed Boiler [J]. Power Generation Technology, 2022, 43(6): 918-926. |
[10] | Jun LIU, Yi DEND, Yanxi YANG, Yonggui WEI, Yanhui XUE, Wenwen SHI. Ash Accumulation State Identification for Infrared Compensation Images of Air Preheater Rotor Based on Deep Learning Method [J]. Power Generation Technology, 2022, 43(3): 510-517. |
[11] | Xiufeng YAN, Ke ZONG, Xiunian HE, Lin GAO, Bin QIN, Mingkun WANG, Wentao HUI. Research on Steam Temperature Control Strategy in Peak Regulation of 1 000 MW Coal Power Unit [J]. Power Generation Technology, 2022, 43(3): 518-522. |
[12] | Yuan LI, Zhicheng GUO, Xiaochao MENG, Kefeng CHEN, Liming REN, Rui MAO, Kefa CEN. Design of an Online Monitoring System for Combustion Field Parameter in a Furnace Based on Tunable Diode Laser Absorption Spectroscopy Technology [J]. Power Generation Technology, 2022, 43(2): 353-361. |
[13] | Guangwei CHEN, Jianping HUANG, Pengzhi XU. Application Research of Semi-coke Blending on a 600MW Anthracite "W" Flame Boiler [J]. Power Generation Technology, 2021, 42(2): 267-272. |
[14] | Guohua QIU, Pengzhi XU. Analysis on Corrosion Causes of Induced Draft Fan Blade in Circulating Fluidized Bed Boiler With Mixed Burning Solid Waste Fuel [J]. Power Generation Technology, 2020, 41(6): 681-688. |
[15] | Xiuqiang CUI. Development and Application of On-line Monitoring System for Falling-off Oxides of Supercritical Boilers [J]. Power Generation Technology, 2020, 41(4): 385-390. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||