发电技术

• •    下一篇

基于融合优化算法的超级电容器健康状态预测模型

尚玉朝1,2,刘春豪3,王凯1,2*   

  1. 1.青岛大学电气工程学院,山东省 青岛市 266071;2.青岛大学威海创新研究院,山东省 威海市 264200;3.山东工商学院计算机科学与技术学院,山东省 威海市 264200
  • 基金资助:
    国家自然科学基金项目(12374088,51877113);山东省高等学校青年创新技术项目(2022KJ139)

Supercapacitors State of Health Prediction Model Based on Fusion Optimization Algorithm

SHANG Yuzhao1,2,LIU Chunhao3,WANG Kai1,2*   

  1. 1.College of Electrical Engineering,Qingdao University,Qindao 266071,Shandong Province,China; 2.Weihai Innovation Research Institute,Qingdao University,Weihai 264200,Shandong Province,China; 3.School of Computer Science and Technology,Shandong Technology and Business University,Weihai 264200,Shandong Province,China
  • Supported by:
    National Natural Science Foundation of China (12374088,51877113); Youth Innovation Technology Project of Higher School in Shandong Province (2022KJ139).

摘要: 【目的】为解决超级电容器充放电过程中容量再生、放电容量不稳定以及个体间差异性较大的问题,提升其安全性和应用效率,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)与双向门控循环单元(bidirectional gated recurrent unit,BiGRU)神经网络的超级电容器健康状态(state of health,SOH)预测模型。随后,结合Q-learning算法与贝叶斯优化算法设计了融合优化算法,并应用到构建的模型之中。【方法】采用CEEMDAN方法对放电容量序列进行处理,将所得残余分量作为模型的输出。选取充放电阶段所用时间和放电阶段的电压序列作为模型的3个输入特征,采用平均绝对误差、均方误差、均方根误差、平均绝对百分比误差、最大误差和决定系数6项评价指标对预测结果进行评估。【结果】相较于未优化模型,优化后模型的预测精度除决定系数有小幅度增加外,其余5项评价指标均有较大程度的减小。【结论】该预测模型具备较强的鲁棒性以及较高的预测精度,对于拓展其潜在应用场景具有重要意义。

关键词: 储能, 超级电容器, 经验模态分解, 双向门控循环单元, 贝叶斯优化, 健康状态, 优化算法, 预测模型

Abstract: [Objectives] In order to solve the problems of of capacity regeneration,unstable discharge capacity,and significant individual variability during the charging and discharging processes of supercapacitors,a state of health (SOH) prediction model based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and bidirectional gated recurrent unit (BiGRU) neural networks was proposed to enhance the safety and efficiency of supercapacitor applications.Subsequently,a fusion optimization algorithm was designed by integrating the Q-learning algorithm with Bayesian optimization and applied to the constructed model.[Methods] The CEEMDAN method was used to process the discharge capacity sequence,with the resulting residual components serving as the model's output.The input features of the model include the charging and discharging time and the voltage sequence during the discharge phase.The model's performance was evaluated using six metrics: mean absolute error,mean squared error,root mean squared error,mean absolute percentage error,maximum error,and coefficient of determination.[Results] Compared to the unoptimized model,the optimized model demonstrated significantly reduced errors across five evaluation metrics,while he coefficient of determination shows a slight improvement.[Conclusions] The proposed prediction model exhibits strong robustness and high prediction accuracy,making it highly significant for expanding its potential application scenarios.

Key words: energy storage, supercapacitor, empirical mode decomposition, bidirectional gated recurrent unit, Bayesian optimization, state of health, optimization algorithm, prediction model