发电技术 ›› 2024, Vol. 45 ›› Issue (5): 910-918.DOI: 10.12096/j.2096-4528.pgt.24030

• 储能 • 上一篇    

非补燃液态压缩空气储能系统性能模拟研究

姬海民1, 薛磊2, 周方盛3, 王电2, 陈诚3, 李靖2, 刘辉1,4, 薛宁1, 张知翔1, 徐党旗1   

  1. 1.西安热工研究院有限公司,陕西省 西安市 710054
    2.中国石油化工股份有限公司北京燕山分公司,北京市 房山区 100086
    3.温州燃机发电有限公司,浙江省 温州市 325000
    4.华北电力大学能源动力与机械工程学院,北京市 昌平区 102206
  • 收稿日期:2024-04-01 修回日期:2024-05-01 出版日期:2024-10-31 发布日期:2024-10-29
  • 作者简介:姬海民(1988),男,硕士,高级工程师,主要研究方向为节能减排技术及新型储能技术,jihaimin@tpri.com.cn
    薛磊(1982),男,高级工程师,主要研究方向为锅炉节能减排技术,15029203617@163.com
    周方盛(1976),男,工程师,主要研究方向为燃气联合循环系统,46142620@QQ.com
    刘辉(1994),男,硕士,工程师,主要研究方向为储能技术,liuhui@tpri.com.cn
  • 基金资助:
    国家自然科学基金项目(52376016)

System Simulation Study on Performance of Non-Supplementary Combustion Liquid Compressed Air Energy Storage System

Haimin JI1, Lei XUE2, Fangsheng ZHOU3, Dian WANG2, Cheng CHEN3, Jing LI2, Hui LIU1,4, Ning XUE1, Zhixiang ZHANG1, Dangqi XU1   

  1. 1.Xi’an Thermal Power Research Institute Co. , Ltd. , Xi’an 710054, Shaanxi Province, China
    2.China Petroleum and Chemical Corporation Beijing Yanshan Branch, Fangshan District, Beijing 100086, China
    3.Wenzhou Gas Turbine Power Generation Co. , Ltd. , Wenzhou 325000, Zhejiang Province, China
    4.School of Energy, Power and Mechanical Engineering, North China Electric Power University, Changping District, Beijing 102206, China
  • Received:2024-04-01 Revised:2024-05-01 Published:2024-10-31 Online:2024-10-29
  • Supported by:
    National Natural Science Foundation of China(52376016)

摘要:

目的 压缩空气储能是大容量、长周期、低成本、高效率的一种储能技术,由于气态压缩空气储能受制于储气室的苛刻要求,无法多场景、规模化推广应用,因此提出一种非补燃液态压缩空气储能系统。 方法 构建了系统理论计算模型,对系统内压缩机级间温度、压缩机级数、透平入口温度等关键参数进行了敏感性分析,同时与非补燃气态压缩空气储能系统进行了对比。 结果 压缩机级间温度过低或过高都会制约系统电-电转化效率的提升;压缩机级数与压缩机耗功呈现正相关趋势,与透平发电功率呈现负相关趋势;在入口压力相同的条件下,透平入口温度越高,发电功率越大,电-电转化效率越高;与非补燃气态储能系统相比,非补燃液态储能密度增加了3.7倍,储气室容积缩小了9/10。 结论 非补燃液态压缩空气储能系统有效解决了储气室的难题,使压缩空气储能技术能够在多场景、规模化推广应用,对火电机组深度调峰及电网大容量储能具有重要意义。

关键词: 储能, 调峰, 非补燃, 气态压缩空气储能, 液态压缩空气储能

Abstract:

Objectives Compressed air energy storage is a type of energy storage technology with large capacity, long cycle, low cost and high efficiency. Due to the strict requirements of gas storage chambers, gaseous compressed air energy storage cannot be widely promoted and applied in multiple scenarios and on a large scale. Therefore, a non-supplementary combustion liquid compressed air energy storage system was proposed. Methods A theoretical calculation model was constructed to conduct sensitivity analysis on key parameters such as compressor interstage temperature, number of compressor stages, and turbine inlet temperature within the system. The results were compared with those of a non-supplementary combustion gaseous compressed air energy storage system. Results Too low or too high interstage temperature in compressors will restrict the improvement of electric-electric conversion efficiency of the system. The number of compressor stages is positively correlated with compressor power consumption, and negatively correlated with the turbine power generation. Under the same inlet pressure, the higher the inlet air temperature of the turbine is, the larger the power generation is, and the higher the electric-electric conversion efficiency is. Compared with the non-supplementary combustion gaseous energy storage system, the density of non-supplementary combustion liquid energy storage system is increased by 3.7 times, and the volume of the storage chamber is decreased by 9/10. Conclusions The non-supplementary combustion liquid compressed air energy storage system effectively solves the problem of gas storage chambers, enabling compressed air energy storage technology to be promoted and applied in multiple scenarios and on a large scale. It is of great significance for deep peak shaving of thermal power units and large-scale energy storage in power grids.

Key words: energy storage, peak shaving, non-supplementary combustion, gaseous compressed air energy storage, liquid compressed air energy storage

中图分类号: