发电技术

• •    下一篇

侧立U型管内超临界二氧化碳对流换热规律模拟研究

魏振文1,金延超1,崔建波1,赵崇鑫2,董建伟2,何燕2,吴龚鹏1,2   

  1. 1.青岛德固特节能装备股份有限公司,山东省 青岛市,266000;2.青岛科技大学机电工程学院,山东省 青岛市,266000
  • 基金资助:
    国家自然科学基金项目(52336003);青岛博士后应用研究项目(QDBSH20220201001)。

Numerical Simulation Study on the Convective Heat Transfer Law of Supercritical Carbon Dioxide Inside a Side U-Shaped Bend

WEI Zhenwen1, JIN Yanchao1, CUI Jianbo1, ZHAO Chongxin2, DONG Jianwei2, HE Yan2,WU Gongpeng1,2   

  1. 1. Doright Co., Ltd., Qingdao Shandong 266000, China; 2. College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao Shandong 266000, China
  • Supported by:
    National Natural Science Foundation of China (52336003); Qingdao Postdoctoral Applied Research Project.

摘要: 【目的】厘清换热器内超临界流体换热机理对突破超临界二氧化碳布雷顿循环发电技术至关重要。相较于直管,超临界二氧化碳在U型弯管内的流动换热过程目前仍有待深入探索。【方法】本文通过三维建模、采用数值模拟方法对侧立U型弯管内的超临界二氧化碳对流换热过程展开研究,探究了重力方向、几何尺寸、热工水力工况及超临界状态对超临界二氧化碳流动换热的影响规律。【结果】结果表明,逆重力场条件下,对流换热系数的最大值略高于顺重力条件且发生位置前移;随着弯管管径增加和半径减小,对流换热系数分别降低和增加。随着流体质量流速和入口温度增加,弯管处的二次湍流现象增强,而压力改变了湍流涡状态;相较于入口温度,弯管处对流换热系数随质量流速和压力增加而变大,而随热流密度增加而减小。【结论】超临界二氧化碳在U型弯管内的对流换热过程更加复杂,在超临界二氧化碳高效换热器的开发过程中应更加注重换热管结构、流体物性与操作工况对对流换热的叠加影响。

关键词: 超临界二氧化碳, 布雷顿热力循环, 发电系统, 换热器, 对流换热, U型管, 数值模拟

Abstract: [Objective] It is crucial for breaking through the supercritical carbon dioxide Brayton cycle power generation technology to clarify the heat transfer mechanism of supercritical fluid in heat exchangers. Compared to the straight pipe, the flow and heat transfer of supercritical carbon dioxide in the U-shaped bend still needs to be explored. [Methods] Numerical simulation method was used to study the convective heat transfer process of supercritical carbon dioxide inside a commonly used U-shaped bend in engineering in this work. The influences of gravity direction, geometric dimensions, thermal hydraulic conditions, and supercritical state on the flow and heat transfer of supercritical carbon dioxide are explored. [Results]The results show that as the diameter and curvature of the bent pipe increase, the convective heat transfer coefficient decreases and increases, respectively. Compared to the condition of parallel gravity, the maximum convective heat transfer coefficient is slightly high and the position shifts forward under the condition of counter gravity. As fluid mass flow rate and inlet temperature increase, the secondary turbulence phenomenon at the bend increases, while the pressure changes the turbulent vortex state. Compared to the inlet temperature, the convective heat transfer coefficient at the bend increases with the increase of mass flow rate and pressure but reduces as heat flux increases. [Conclusions] The above conclusions suggest that the convective heat transfer process of supercritical carbon dioxide in a U-shaped bend is more complex. Thus, more attention should be paid to the combined effects of tube structure, fluid property, and operating conditions on convective heat transfer for the heat exchanger design.

Key words: supercritical carbon dioxide, Brayton thermodynamic cycle, power generation system, heat exchanger, convective heat transfer, U-shaped tube, numerical simulation