发电技术 ›› 2024, Vol. 45 ›› Issue (1): 51-61.DOI: 10.12096/j.2096-4528.pgt.23104
张安安, 周奇, 李茜, 丁宁, 杨超, 马岩
收稿日期:
2023-10-19
出版日期:
2024-02-29
发布日期:
2024-02-29
作者简介:
基金资助:
Anan ZHANG, Qi ZHOU, Qian LI, Ning DING, Chao YANG, Yan MA
Received:
2023-10-19
Published:
2024-02-29
Online:
2024-02-29
Supported by:
摘要:
中国电力行业CO2排放量是CO2排放的主要来源,其中火电厂CO2排放量在电力行业中占比最大。在“双碳”目标下,CO2计量技术可以实现对火电厂中CO2排放量的直观判断,为火电厂CO2减排提供重要支撑,促进火电厂参与碳交易,带动区域经济发展。结合国内外政策,讨论了目前通用CO2计量方法的实施进展,总结归纳了以碳核算为主、碳监测为辅的火电厂CO2计量方法存在的问题,并对火电厂CO2计量技术应用的重难点进行了分析。最后,对火电厂CO2计量技术的发展及应用进行了展望。
中图分类号:
张安安, 周奇, 李茜, 丁宁, 杨超, 马岩. “双碳”目标下火电厂CO2计量技术研究现状与展望[J]. 发电技术, 2024, 45(1): 51-61.
Anan ZHANG, Qi ZHOU, Qian LI, Ning DING, Chao YANG, Yan MA. Research Status and Prospect of CO2 Accounting Technology in Thermal Power Plants Under the Goal of Dual Carbon[J]. Power Generation Technology, 2024, 45(1): 51-61.
编号 | 名称 | 作用 |
---|---|---|
GB/T 16157—1996 | 固定源污染源排气中颗粒物测定与气态污染物采样方法 | 规范固定源排放监测,特别样品采集方法 |
HJ/T 397—2007 | 固定源废气监测技术规范 | 规定固定源排放监测测定技术方法,以及便携式仪器监测方法 |
HJ 75—2017 | 固定源污染源烟气(SO2、NO x 、颗粒物)排放连续监测技术规范 | 规定固定源排放连续监测系统的组成、技术性能、日常运行质量等有关要求 |
HJ 76—2017 | 固定源污染源烟气(SO2、NO x 、颗粒物)排放连续监测系统技术要求及检测方法 | 固定源污染源烟气(SO2、NO x 、颗粒物)排放连续监测系统技术要求及检测方法 |
HJ 870—2017 | 固定污染源废气 二氧化碳的测定 非分散红外吸收法 | 规定测定固定污染源废气中二氧化碳的非分散红外吸收法 |
表1 涉及国内固定污染源排放监测技术规范
Tab. 1 Technical specifications for emission monitoring of domestic fixed pollution sources
编号 | 名称 | 作用 |
---|---|---|
GB/T 16157—1996 | 固定源污染源排气中颗粒物测定与气态污染物采样方法 | 规范固定源排放监测,特别样品采集方法 |
HJ/T 397—2007 | 固定源废气监测技术规范 | 规定固定源排放监测测定技术方法,以及便携式仪器监测方法 |
HJ 75—2017 | 固定源污染源烟气(SO2、NO x 、颗粒物)排放连续监测技术规范 | 规定固定源排放连续监测系统的组成、技术性能、日常运行质量等有关要求 |
HJ 76—2017 | 固定源污染源烟气(SO2、NO x 、颗粒物)排放连续监测系统技术要求及检测方法 | 固定源污染源烟气(SO2、NO x 、颗粒物)排放连续监测系统技术要求及检测方法 |
HJ 870—2017 | 固定污染源废气 二氧化碳的测定 非分散红外吸收法 | 规定测定固定污染源废气中二氧化碳的非分散红外吸收法 |
各类气象因子 | 适宜条件 | |||
---|---|---|---|---|
风向变化大小/(°) | <15 | 15~29 | 30~45 | >45 |
平均风速/(m/s) | 1.0~2.0 | 2.1~3.0 | 3.1~4.5 | >4.5 |
大气稳定度等级 | F、E | D | C | B、A |
适宜程度类别 | a | b | c | d |
表2 各气象因子适宜程度分类
Tab. 2 Classification of suitability of meteorological factors
各类气象因子 | 适宜条件 | |||
---|---|---|---|---|
风向变化大小/(°) | <15 | 15~29 | 30~45 | >45 |
平均风速/(m/s) | 1.0~2.0 | 2.1~3.0 | 3.1~4.5 | >4.5 |
大气稳定度等级 | F、E | D | C | B、A |
适宜程度类别 | a | b | c | d |
1 | 刘含笑 .碳背景下电除尘器的节能减碳分析[J].发电技术,2023,44(5):738-744. doi:10.12096/j.2096-4528.pgt.21063 |
LIU H X .Energy saving and carbon reduction analysis of electrostatic precipitator under double carbon background[J].Power Generation Technology,2023,44(5):738-744. doi:10.12096/j.2096-4528.pgt.21063 | |
2 | 郑国光 .支撑“双碳”目标实现的问题辨识与关键举措研究[J].中国电力,2023,56(11):1-8. |
ZHENG G G .Problem identification and key measures to support the achievement of carbon peak and carbon neutrality[J].Electric Power,2023,56(11):1-8. | |
3 | 董瑞,高林,何松,等 .CCUS技术对我国电力行业低碳转型的意义与挑战[J].发电技术,2022,43(4):523-532. doi:10.12096/j.2096-4528.pgt.22053 |
DONG R, GAO L, HE S,et al .Significance and challenges of CCUS technology for low-carbon transformation of China’s power industry[J].Power Generation Technology,2022,43(4):523-532. doi:10.12096/j.2096-4528.pgt.22053 | |
4 | 饶庆平,郝建刚,白云山 .碳排放目标背景下我国天然气发电发展路径分析[J].发电技术,2022,43(3):468-475. doi:10.12096/j.2096-4528.pgt.21075 |
RAO Q P, HAO J G, BAI Y S .Analysis on the development path of natural gas power generation in china under the background of carbon emission target[J].Power Generation Technology,2022,43(3):468-475. doi:10.12096/j.2096-4528.pgt.21075 | |
5 | 袁加梅,尤佳,周永刚,等 .电热耦合系统全流程碳排放计量技术[J].电测与仪表,2022,59(11):18-25. |
YUAN J M, YOU J, ZHOU Y G,et al .The whole-process carbon emission metering technology for electro-thermal coupled system[J].Electrical Measurement & Instrumentation,2022,59(11):18-25. | |
6 | 刘子华,曹瑞峰,赵志扬,等 .基于碳排放流的综合能源系统碳排放监测方法[J].浙江电力,2023,42(10):65-72. |
LIU Z H, CAO R F, ZHAO Z Y,et al .A carbon emission monitoring method for integrated energy systems based on carbon emission flow[J].Zhejiang Electric Power,2023,42(10):65-72. | |
7 | 卢伟业,陈小玄,陆继东,等 .双碳背景下火电企业碳计量分析与建议[J].洁净煤技术,2023,29(1):194-203. |
LU W Y, CHEN X X, LU J D,et al .Analysis and suggestion on carbon accounting of thermal power enterprises under the background of carbon peak and carbon neutrality[J].Clean Coal Technology,2023,29(1):194-203. | |
8 | 招景明,李经儒,潘峰,等 .电力碳排放计量技术现状及展望[J].电测与仪表,2023,60(3):1-8. |
ZHAO J M, LI J R, PAN F,et al .Current status and future prospects of electricity carbon emission measurement technology[J].Electrical Measurement & Instrumentation,2023,60(3):1-8. | |
9 | 北京市市场监督管理局 . 二氧化碳排放核算和报告要求 电力生产业: [S].北京:北京市市场监督管理局,2020. |
Beijing Municipal Bureau of Market Supervision and Administration . Requirements for carbon dioxide emission accounting and reporting power generation enterprises: [S].Beijing:Beijing Municipal Bureau of Market Supervision and Administration,2020. | |
10 | 周向忠,罗子明,梁成虎,等 .炼化企业碳平衡法计算CO2排放量[J].石化技术,2023,30(6):268-270. doi:10.3969/j.issn.1006-0235.2023.06.091 |
ZHOU X Z, LUO Z M, LIANG C H,et al .Carbon balance method for calculating CO2 emissions in refining and chemical enterprises[J].Petrochemical Industry Technology,2023,30(6):268-270. doi:10.3969/j.issn.1006-0235.2023.06.091 | |
11 | 李胜杰 .水泥企业碳排放计量方法研究与系统开发[D].北京:北京信息科技大学,2013. doi:10.3923/itj.2013.8424.8429 |
LI S J .Research and system development of carbon emission measurement methods for cement enterprises[D].Beijing:Beijing Information Science and Technology University,2013. doi:10.3923/itj.2013.8424.8429 | |
12 | 龙建平 .“碳中和”目标下火电机组远方碳排放监测系统设计与应用[J].广西电力,2021,44(2):10-13. |
LONG J P .Design and application of a remote carbon emission monitoring system for thermal power unit to help achieve the carbon neutrality goal[J].Guangxi Electric Power,2021,44(2):10-13. | |
13 | 国家能源局 . 火电厂烟气二氧化碳排放连续监测技术规范: [S].北京:国家能源局,2021. |
National Energy Administration . Technical specifications for continuous monitoring of carbon dioxide emissions from flue gas of thermal power plants: [S].Beijing:National Energy Administration,2021. | |
14 | 王霂晗 .火电厂碳排放监测体系与核算方法的研究[D].南京:南京信息工程大学,2020. |
WANG M H .Research on carbon emission monitoring system and accounting method of thermal power plant[D].Nanjing:Nanjing University of Information Science & Technology,2020. | |
15 | SLONG S E, NORRIS J E, CARNEY J,et al .Provision of primary NIST traceability to support vapor phase mercury emissions monitoring of combustion sources using isotope dilution inductively coupled plasma mass spectrometry[J].Atmospheric Pollution Research,2020,11(5):909-919. doi:10.1016/j.apr.2020.02.003 |
16 | 王霂晗,朱林,张晶杰,等 .欧盟火电厂二氧化碳排放在线监测系统质量保证体系对中国的启示[J].中国电力,2020,53(3):154-158. |
WANG M H, ZHU L, ZHANG J J,et al .Practice of quality assurance system of carbon dioxide emission on-line monitoring system in the european union[J].Electric Power,2020,53(3):154-158. | |
17 | 周春蕾,王明,李梦,等 .美国火电机组碳排放连续监测机制研究[J].价格理论与实践,2018(11):54-57. |
ZHOU C L, WANG M, LI M,et al .The research on the mechanism of continuous carbon emission monitoring of thermal power units in the U.S.[J].Price:Theory & Practice,2018(11):54-57. | |
18 | QUICK J C .Carbon dioxide emission tallies for 210 U.S. coal-fired power plants:a comparison of two accounting methods[J].Journal of the Air & Waste Management Association,2014,64(1):73-79. doi:10.1080/10962247.2013.833146 |
19 | ACKERMAN K V, SUNDQUIST E T .Comparison of two U.S. power-plant carbon dioxide emissions data sets[J].Environmental Science & Technology,2008,42(15):5688-5693. doi:10.1021/es800221q |
20 | GURNEY K R, HUANG J, COLTIN K .Bias present in US federal agency power plant CO2 emissions data and implications for the US clean power plan[J].Environmental Research Letters,2016,11(6):064005. doi:10.1088/1748-9326/11/6/064005 |
21 | ZHU R, ZHANG Y, YUAN Y,et al .Deposition loss of particles in the sampling lines of continuous emission monitor[J].Aerosol and Air Quality Research,2018,18(6):1483-1492. doi:10.4209/aaqr.2017.11.0523 |
22 | THULL B, WAEBER M .Software-supported uprating of availability for continuous emission monitoring systems (CEMS) using predictive systems (PEMS)[J].Gefahrstoffe Reinhaltung Der Luft,2017,77(6):257-260. |
23 | 国家环境保护总局 . 固定污染源排气中颗粒物测定与气态污染物采样方法: [S].北京:国家环境保护总局,1996. |
State Environmental Protection Administration of the People’s Republic of China . The determination of particulates and sampling methods of gaseous pollutants emitted from exhaust gas of stationary source: [S].Beijing:State Environmental Protection Administration of the People’s Republic of China,1996. | |
24 | 国家环境保护总局 . 固定源废气监测技术规范: [S].北京:国家环境保护总局,2007. doi:10.1201/9781420016970-23 |
State Environmental Protection Administration of the People’s Republic of China . Technical specification for emission monitoring of stationary source: [S].Beijing:State Environmental Protection Administration of the People’s Republic of China,2007. doi:10.1201/9781420016970-23 | |
25 | 谭超 .燃煤电厂碳排放监测方法研究[D].广州:华南理工大学,2017. |
TAN C .Study on monitoring methods of carbon emission in coal fired power plants[D].Guangzhou:South China University of Technology,2017. | |
26 | 政府间气候变化专门委员会 . 2006年IPCC国家温室气体清单指南:I [S].东京:全球环境战略研究所,2006. |
Intergovernmental Panel on Climate Change . 2006 IPCC national greenhouse gas inventory guidelines:I [S].Tokyo:Institute for Global Environmental Strategies,2006. | |
27 | CHEN Y C, DU W, ZHUO S J,et al .Stack and fugitive emissions of major air pollutants from typical brick kilns in China[J].Environmental Pollution,2017,224:421-429. doi:10.1016/j.envpol.2017.02.022 |
28 | 霍玉侠 .石化工业无组织排放环境影响评价研究[D].兰州:兰州大学,2011. |
HUO Y X .Study on environmental impact assessment of fugitive emission in petrochemical industry[D].Lanzhou:Lanzhou University,2011. | |
29 | FARHANE M, ALEHYANE O, SOUHAR O .Three-dimensional analytical solution of the advection-diffusion equation for air pollution dispersion[J].ANZIAM Journal,2022,64:40-53. doi:10.21914/anziamj.v64.16883 |
30 | 陈诗龙 .UCT工艺污水处理厂二氧化碳排放特性[D].镇江:江苏大学,2019. |
CHEN S L .CO2 emission characteristics of UCT process wastewater treatment plant[D].Zhenjiang:Jiangsu University,2019. | |
31 | NA K, KIM Y P .Seasonal characteristics of ambient volatile organic compounds in Seoul,Korea[J].Atmospheric Environment,2001,35(15):2603-2614. doi:10.1016/s1352-2310(00)00464-7 |
32 | HONG D W, CHO S Y .Improved methods for performing multivariate analysis and deriving background spectra in atmospheric open-path FT-IR monitoring[J].Applied Spectroscopy,2003,57(3):299-308. doi:10.1366/000370203321558218 |
33 | 李凌波,李龙,程梦婷,等 .石化企业挥发性有机物无组织排放监测技术进展[J].化工进展,2020,39(3):1196-1208. |
LI L B, LI L, CHENG M T,et al .Current status and future developments in monitoring of fugitive VOC emissions from petroleum refining and petrochemical industry[J].Chemical Industry and Engineering Progress,2020,39(3):1196-1208. | |
34 | U.S. Environmental Protection Agency .Clean air act standards and guidelines for petroleum refineries and distribution industry[EB/OL].(2016-10-06)[2023-10-06].. |
35 | SMITH T, INNOCENTI F, ROBINSON R A .1st interim report on CEN/TC264/WG38 stationary source emissions-standard method to determine fugitive and diffuse emissions of volatile organic compounds into the atmosphere[EB/OL].(2019-06-06)[2023-10-06].. |
36 | FEITZ A, SCHRODER I, PHILLIPS F,et al .The Ginninderra CH4 and CO2 release experiment:an evaluation of gas detection and quantification techniques[J].International Journal of Greenhouse Gas Control,2018,70:202-224. doi:10.1016/j.ijggc.2017.11.018 |
37 | MACKIE K R, COOPER C D .Landfill gas emission prediction using Voronoi diagrams and importance sampling[J].Environmental Modelling and Software,2009,24(10):1223-1232. doi:10.1016/j.envsoft.2009.04.003 |
38 | HUMPHRIES R, JENKINS C, LEUNING R,et al .Atmospheric tomography:a Bayesian inversion technique for determining the rate and location of fugitive emissions[J].Environmental Science & Technology,2012,46(3):1739-1746. doi:10.1021/es202807s |
39 | TKUSKE T, JENKINS C, ZEGELIN S,et al .Atmospheric tomography as a tool for quantification of CO2 emissions from potential surface leaks:signal processing workflow for a low accuracy sensor array[J].Energy Procedia,2013,37:4065-4076. doi:10.1016/j.egypro.2013.06.307 |
40 | FEITZ A, JENKINS C, SCHACHT U,et al .An assessment of near surface CO2 leakage detection techniques under Australian conditions[J].Energy Procedia,2014,63:3891-3906. doi:10.1016/j.egypro.2014.11.419 |
41 | JENKINS C, KUSKE T, ZEGELIN S .Simple and effective atmospheric monitoring for CO2 leakage[J].International Journal of Greenhouse Gas Control,2016,46:158-174. doi:10.1016/j.ijggc.2016.01.001 |
42 | 李凌波,程梦婷,李龙,等 .炼油企业挥发性有机物无组织排放通量监测现状与发展[J].中国环境监测,2020,36(3):19-28. |
LI L B, CHENG M T, LI L,et al .Current and future developments in fugitive volatile organic compounds emission flux monitoring in petroleum refining industry[J].Environmental Monitoring in China,2020,36(3):19-28. |
[1] | 张崇, 李博, 李笑宇, 刘洪波, 刘永发. 基于虚拟同步机控制参数自适应调节的储能系统调频方法[J]. 发电技术, 2024, 45(4): 772-780. |
[2] | 赵国钦, 蓝茂蔚, 李杨, 周元祥, 江政纬, 甘云华. 基于最小二乘支持向量机的火电厂烟气含氧量预测模型优化研究[J]. 发电技术, 2023, 44(4): 534-542. |
[3] | 张立峰, 李晶, 王智. 基于主成分分析和深度神经网络的声学层析成像温度分布重建[J]. 发电技术, 2023, 44(3): 399-406. |
[4] | 阮存钦, 洪志刚, 赖培灿, 张建华, 林锡昆, 周江, 冯前伟, 张杨. 基于在线监测数据的燃煤电厂脱硝装置性能预测研究[J]. 发电技术, 2023, 44(1): 100-106. |
[5] | 高骞, 杨俊义, 洪宇, 孙小磊, 朱前进, 俞天, 王鑫, 王琳媛, 李泽森. 新型电力系统背景下电网发展业务数字化转型架构及路径研究[J]. 发电技术, 2022, 43(6): 851-859. |
[6] | 董瑞, 高林, 何松, 杨东泰. CCUS技术对我国电力行业低碳转型的意义与挑战[J]. 发电技术, 2022, 43(4): 523-532. |
[7] | 朱凯, 张艳红. “双碳”形势下电力行业氢能应用研究[J]. 发电技术, 2022, 43(1): 65-72. |
[8] | 郭栋, 晋银佳, 朱跃. 火电厂废水“零排放”全流程处理中试试验系统设计与构建[J]. 发电技术, 2021, 42(3): 357-362. |
[9] | 孙金龙. 330 MW燃煤火电机组脱硝系统的优化研究[J]. 发电技术, 2019, 40(6): 570-579. |
[10] | 李允超,赵大周,刘博,张贺,马洪涛,田鑫. 火电厂烟气余热利用现状与展望[J]. 发电技术, 2019, 40(3): 270-275. |
[11] | 李正心,丁亮亮,郝银萍,杜冬梅. 火电厂煤场钢结构有限元设计输出图的规范化研究[J]. 发电技术, 2018, 39(5): 433-437. |
[12] | 孙飞,刘烨,魏高升,由文江. 火电厂螺杆式空压机余热利用方案及经济性分析[J]. 发电技术, 2018, 39(3): 240-243. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||