发电技术 ›› 2023, Vol. 44 ›› Issue (1): 100-106.DOI: 10.12096/j.2096-4528.pgt.20106
阮存钦1, 洪志刚2, 赖培灿1, 张建华1, 林锡昆1, 周江1, 冯前伟2, 张杨2
收稿日期:
2022-06-13
出版日期:
2023-02-28
发布日期:
2023-03-02
作者简介:
基金资助:
Cunqin RUAN1, Zhigang HONG2, Peican LAI1, Jianhua ZHANG1, Xikun LIN1, Jiang ZHOU1, Qianwei FENG2, Yang ZHANG2
Received:
2022-06-13
Published:
2023-02-28
Online:
2023-03-02
Supported by:
摘要:
火电厂中污染物脱除的精准调控一直受到广泛关注,通过将大数据分析技术应用于某600 MW的发电机组脱硝系统,开展复杂状态下环保在线监测数据的深度挖掘研究,高效精准地获得影响污染物脱除设备性能的关键因素,结合污染物脱除原理,确定了环保污染指数预测模型的输入与输出元素,并对脱硝系统中资源消耗的指标进行表征,搭建了机组环保污染指数的大数据预测模型。结果表明:合理清理工艺流程上的关联参数后,关键因素分析的结果与影响环保污染物脱除机理定性分析结果一致。训练后的模型不仅能够高精度地重现当前环保性能,也具备预测环保性能的能力。通过对选择性催化还原(selective catalytic reduction,SCR)系统的具体分析,可为后续火电厂其他环保设备实施进一步的精准调控提供一定的理论依据和数据支撑。
中图分类号:
阮存钦, 洪志刚, 赖培灿, 张建华, 林锡昆, 周江, 冯前伟, 张杨. 基于在线监测数据的燃煤电厂脱硝装置性能预测研究[J]. 发电技术, 2023, 44(1): 100-106.
Cunqin RUAN, Zhigang HONG, Peican LAI, Jianhua ZHANG, Xikun LIN, Jiang ZHOU, Qianwei FENG, Yang ZHANG. Research on Performance Prediction of Coal-fired Power Plant Denitrification Device Based on Online Monitoring Data[J]. Power Generation Technology, 2023, 44(1): 100-106.
参数 | 设计值 | 备注 |
---|---|---|
烟气量/(m3/h) | 2 285 629 | 标态、干基、6%O2 |
设计烟气温度/℃ | 364 | — |
烟尘质量浓度/(g/m3) | 41 | 标态、干基、6%O2 |
NO x 质量浓度/(mg/m3) | 300 | 标态、干基、6%O2 |
SO2质量浓度/(mg/m3) | 3 000 | 标态、干基、6%O2 |
SO3质量浓度/(mg/m3) | 30 | 标态、干基、6%O2 |
O2质量分数/% | 3.29 | 干基 |
H2O质量分数/% | 7.78 | — |
表1 脱硝装置入口烟气参数
Tab. 1 Inlet flue gas parameters of denitrification device
参数 | 设计值 | 备注 |
---|---|---|
烟气量/(m3/h) | 2 285 629 | 标态、干基、6%O2 |
设计烟气温度/℃ | 364 | — |
烟尘质量浓度/(g/m3) | 41 | 标态、干基、6%O2 |
NO x 质量浓度/(mg/m3) | 300 | 标态、干基、6%O2 |
SO2质量浓度/(mg/m3) | 3 000 | 标态、干基、6%O2 |
SO3质量浓度/(mg/m3) | 30 | 标态、干基、6%O2 |
O2质量分数/% | 3.29 | 干基 |
H2O质量分数/% | 7.78 | — |
序号 | 评价指标 | A侧出口NO x 浓度 | B侧出口NO x 浓度 | A侧氨逃逸浓度 | B侧氨逃逸浓度 | 脱硝电耗 |
---|---|---|---|---|---|---|
1 | R2 | 0.93 | 0.87 | 0.86 | 0.96 | 0.91 |
2 | ERMSE | 7.8 | 4.36 | 0.05 | 0.2 | 7.75 |
3 | EMAE | 5.2 | 3.03 | 0.04 | 0.09 | 5.7 |
4 | EMAPE | 0.128 | 0.07 | 0.15 | 0.13 | 0.03 |
表2 SCR预测数据模型的主要评价指标
Tab. 2 Main evaluation indicators of SCR forecast data model
序号 | 评价指标 | A侧出口NO x 浓度 | B侧出口NO x 浓度 | A侧氨逃逸浓度 | B侧氨逃逸浓度 | 脱硝电耗 |
---|---|---|---|---|---|---|
1 | R2 | 0.93 | 0.87 | 0.86 | 0.96 | 0.91 |
2 | ERMSE | 7.8 | 4.36 | 0.05 | 0.2 | 7.75 |
3 | EMAE | 5.2 | 3.03 | 0.04 | 0.09 | 5.7 |
4 | EMAPE | 0.128 | 0.07 | 0.15 | 0.13 | 0.03 |
参数 | 满负荷 工况 | 中负荷 工况 | 低负荷 工况 |
---|---|---|---|
原烟气量/(km3/h) | 3 540.7 | 3 787.8 | 3 307.5 |
原烟气温度/℃ | 114.9 | 110.3 | 101.5 |
原烟气压力/kPa | 2.46 | 1.76 | 1.28 |
脱硝系统总风量/(km3/h) | 2 094.6 | 1 843.8 | 1 346.5 |
总一次风流量/(km3/h) | 468.2 | 392.3 | 304.8 |
A侧热二次风流量/(km3/h) | 796.0 | 684.4 | 449.0 |
B侧热二次风流量/(km3/h) | 835.9 | 757.9 | 594.2 |
脱硝A侧入口温度/℃ | 342.0 | 336.7 | 303.8 |
脱硝B侧入口温度/℃ | 344.2 | 329.4 | 296.3 |
脱硝A侧入口NO x 质量浓度/(mg/m3)(折算值) | 246.90 | 149.23 | 243.58 |
脱硝B侧入口NO x 质量浓度/(mg/m3)(折算值) | 270.54 | 251.64 | 305.71 |
脱硝A侧入口O2质量分数/% | 2.3 | 2.6 | 6.2 |
脱硝B侧入口O2质量分数/% | 4.6 | 3.0 | 5.0 |
脱硝A侧还原剂耗量/(kg/h) | 83.80 | 45.74 | 43.21 |
脱硝B侧还原剂耗量/(kg/h) | 86.26 | 33.96 | 34.27 |
表3 SCR系统烟气脱硝测试结果
Tab. 3 Test results of SCR system flue gas denitration
参数 | 满负荷 工况 | 中负荷 工况 | 低负荷 工况 |
---|---|---|---|
原烟气量/(km3/h) | 3 540.7 | 3 787.8 | 3 307.5 |
原烟气温度/℃ | 114.9 | 110.3 | 101.5 |
原烟气压力/kPa | 2.46 | 1.76 | 1.28 |
脱硝系统总风量/(km3/h) | 2 094.6 | 1 843.8 | 1 346.5 |
总一次风流量/(km3/h) | 468.2 | 392.3 | 304.8 |
A侧热二次风流量/(km3/h) | 796.0 | 684.4 | 449.0 |
B侧热二次风流量/(km3/h) | 835.9 | 757.9 | 594.2 |
脱硝A侧入口温度/℃ | 342.0 | 336.7 | 303.8 |
脱硝B侧入口温度/℃ | 344.2 | 329.4 | 296.3 |
脱硝A侧入口NO x 质量浓度/(mg/m3)(折算值) | 246.90 | 149.23 | 243.58 |
脱硝B侧入口NO x 质量浓度/(mg/m3)(折算值) | 270.54 | 251.64 | 305.71 |
脱硝A侧入口O2质量分数/% | 2.3 | 2.6 | 6.2 |
脱硝B侧入口O2质量分数/% | 4.6 | 3.0 | 5.0 |
脱硝A侧还原剂耗量/(kg/h) | 83.80 | 45.74 | 43.21 |
脱硝B侧还原剂耗量/(kg/h) | 86.26 | 33.96 | 34.27 |
参数 | 满负荷工况 | 中负荷工况 | 低负荷工况 | |||
---|---|---|---|---|---|---|
预测值 | 实际值 | 预测值 | 实际值 | 预测值 | 实际值 | |
脱硝A侧出口NO x 质量浓度/(mg/m³) | 27.10 | 29.02 | 47.14 | 57.55 | 38.91 | 40.03 |
脱硝B侧出口NO x 质量浓度/(mg/m³) | 26.98 | 26.68 | 52.76 | 56.26 | 37.55 | 36.52 |
脱硝A侧氨逃逸质量浓度/(mg/m³) | 0.10 | 0.10 | 0.17 | 0.13 | 0.09 | 0.07 |
脱硝B侧氨逃逸质量浓度/(mg/m³) | 2.05 | 2.10 | 0.14 | 0.13 | 2.05 | 2.25 |
脱硝电耗/kW | 236.29 | 238.05 | 186.14 | 213.68 | 151.60 | 145.84 |
表4 变负荷下SCR系统预测模型输出数据和实测数据
Tab. 4 Output data and measured data of the forecast model of SCR system under variable load
参数 | 满负荷工况 | 中负荷工况 | 低负荷工况 | |||
---|---|---|---|---|---|---|
预测值 | 实际值 | 预测值 | 实际值 | 预测值 | 实际值 | |
脱硝A侧出口NO x 质量浓度/(mg/m³) | 27.10 | 29.02 | 47.14 | 57.55 | 38.91 | 40.03 |
脱硝B侧出口NO x 质量浓度/(mg/m³) | 26.98 | 26.68 | 52.76 | 56.26 | 37.55 | 36.52 |
脱硝A侧氨逃逸质量浓度/(mg/m³) | 0.10 | 0.10 | 0.17 | 0.13 | 0.09 | 0.07 |
脱硝B侧氨逃逸质量浓度/(mg/m³) | 2.05 | 2.10 | 0.14 | 0.13 | 2.05 | 2.25 |
脱硝电耗/kW | 236.29 | 238.05 | 186.14 | 213.68 | 151.60 | 145.84 |
1 | 赵国栋,易欢欢,糜万军 .大数据时代的历史机遇[M].北京:清华大学出版社,2013. |
ZHAO G D, YI H H, MI W J .Historical opportunities in the era of big data[M].Beijing:Tsinghua University Press,2013. | |
2 | 王建民 .《生态环境大数据建设总体方案》政策解读[J].环境保护,2016,44(14):12-14. doi:10.14026/j.cnki.0253-9705.2016.14.001 |
WANG J M .Interpretation to the Master Plan of Ecological Environment Big Data[J].Environmental Protection,2016,44(14):12-14. doi:10.14026/j.cnki.0253-9705.2016.14.001 | |
3 | 白浩,袁智勇,梁朔,等 .基于大数据处理的配网运行效率关联性分析[J].电力系统保护与控制,2020,48(6):61-67. |
BAI H, YUAN Z Y, LIANG S,et al .Correlation analysis of distribution network operation efficiency based on big data processing[J].Power System Protection and Control,2020,48(6):61-67. | |
4 | 陈人杰,李华取,彭晓涛,等 .基于改进TOPSIS的新能源大数据服务项目评价研究[J].电力建设,2021,42(3):126-134. doi:10.12204/j.issn.1000-7229.2021.03.015 |
CHEN R J, LI H Q, PENG X T,et al .Study on evaluation method for new energy big data service project applying improved TOPSIS[J].Electric Power Construction,2021,42(3):126-134. doi:10.12204/j.issn.1000-7229.2021.03.015 | |
5 | 国家统计局能源统计司 .中国能源统计年鉴[M].北京:中国统计出版社. 2018. |
Department of Energy Statistics, National Bureau of Statistics .China energy statistical yearbook[M].Beijing:China Statistics Press. 2018. | |
6 | 郑婷婷,周月桂,金圻烨 .燃煤电厂多种烟气污染物协同脱除超低排放分析[J].热力发电,2017,46(4):10-15. doi:10.3969/j.issn.1002-3364.2017.04.010 |
ZHENG T T, ZHOU Y G, JIN Q Y .Integrated removal and ultra-low emission of multiple pollutants for coal-fired power plants[J].Thermal Power Generation,2017,46(4):10-15. doi:10.3969/j.issn.1002-3364.2017.04.010 | |
7 | 赵春生,杨君君,王婧,等 .燃煤发电行业低碳发展路径研究[J].发电技术,2021,42(5):547-553. doi:10.12096/j.2096-4528.pgt.21054 |
CHUANG C S, YANG J J, QANG J,et al .Research on low-carbon development path of coal-fired power industry[J].Power Generation Technology,2021,42(5):547-553. doi:10.12096/j.2096-4528.pgt.21054 | |
8 | 杨勇平 .燃煤发电系统能源高效清洁利用的基础研究综述[J].发电技术,2019,40(4):308-315. doi:10.12096/j.2096-4528.pgt.19107 |
YANG Y P .Review of basic research on energy clean and efficient utilization in coal-fired power systems[J].Power Generation Technology,2019,40(4):308-315. doi:10.12096/j.2096-4528.pgt.19107 | |
9 | 帅伟,李立,崔志敏,等 .基于实测的超低排放燃煤电厂主要大气污染物排放特征与减排效益分析[J].中国电力,2015,11(3):131-137. |
SHUAI W, LI L, CUI Z M,et al .Analysis of primary air pollutant emission characteristics and reduction efficiency for ultra-Low emission coal-fired power plants based on actual measurement[J].Electric Power,2015,11(3):131-137. | |
10 | 朱法华,王临清 .煤电超低排放的技术经济与环境效益分析[J].环境保护,2014,21(11):28-33. |
ZHU F H, WANG L Q .Analysis on technology-economy and environment benefit of ultra-low emission from coal-fired power units[J].Environmental Protection,2014,21(11):28-33. | |
11 | 徐振,莫华,杨光俊,等 .火电厂大气污染物自动监测达标判定现状与国际经验借鉴[J].环境影响评价,2018,40(1):38-41. |
XU Z, MO H, YANG G J,et al .Present situation and international experience of using continuous emissions monitoring to assess the compliance with emission limit values of air pollutants for thermal power plants[J].Environmental Impact Assessment,2018,40(1):38-41. | |
12 | 朱法华,王圣 .煤电大气污染物超低排放技术集成与建议[J].环境影响评价,2014(5):25-29. doi:10.3969/j.issn.1674-2842.2014.05.009 |
ZHU F H, WANG S .Coal power generation technology integration and recommendations for ultra-low emission of air pollutants[J].Environmental Impact Assessment,2014(5):25-29. doi:10.3969/j.issn.1674-2842.2014.05.009 | |
13 | 史文峥,杨萌萌,张绪辉,等 .燃煤电厂超低排放技术路线与协同脱除[J].中国电机工程学报,2016,36(16):4308-4318. |
SHI W Z, YANG M M, ZHANG X H,et al .Coal-fired power plant ultra-low emission technology route and coordinated removal[J].Proceedings of the CSEE,2016,36(16):4308-4318. | |
14 | 中国环境保护产业协会 .燃煤电厂烟气超低排放技术[M].北京:中国电力出版社,2015. |
China Environmental Protection Industry Association .Ultra-low emission technology of coal-fired power plant flue gas[M].Beijing:China Electric Power Press,2015. | |
15 | 张东霞,苗新,刘丽平 .智能电网大数据技术发展研究[J].中国电机工程学报,2015,35(1):2-12. doi:10.13334/j.0258-8013.pcsee.2015.01.001 |
ZHANG D X, MIAO X, LIU L P .Research on development strategy for smart grid big data[J].Proceedings of the CSEE,2015,35(1):2-12. doi:10.13334/j.0258-8013.pcsee.2015.01.001 | |
16 | 杨新民,曾卫东,肖勇 .火电站智能化现状及展望[J].热力发电,2019,48(9):1-8. |
YANG X M, ZENG W D, XIAO Y .Present situation and prospect of thermal power plant intelligentization[J].Thermal Power Generation,2019,48(9):1-8. | |
17 | 曾德良,杨婷婷,程晓,等 .数据挖掘方法在实时厂级负荷优化分配中的应用[J].中国电机工程学报,2010,30(11):109-114. |
ZENG D L, YANG T T, CHENG X,et al .Application of data mining method in real-time optimal load dispatching of power plant[J].Proceedings of the CSEE,2010,30(11):109-114. | |
18 | 彭小圣,邓迪元,程时杰,等 .面向智能电网应用的电力大数据关键技术[J].中国电机工程学报,2015,35(3):503-511. |
PENG X S, DENG D Y, CHENG S J,et al .Key technologies of electric power big data and its application prospects in smart grid[J].Proceedings of the CSEE,2015,35(3):503-511. | |
19 | 张磊 .大规模互联网图像检索与模式挖掘[J].中国科学:信息科学,2013,43:1641-1653. doi:10.1360/n112013-00058 |
ZHANG L .Large-scale web image search and pattern mining[J].Scientia Sinica Informationis,2013,43:1641-1653. doi:10.1360/n112013-00058 | |
20 | 刘炳含,付忠广,王鹏凯,等 .大数据挖掘技术在燃煤电站机组能耗分析中的应用研究[J].中国电机工程学报,2018,38(12):3578-3587. |
LIU B H, FU Z G, WANG P K,et al .Big data mining technology application in energy consumption analysis of coal-fired power plant units[J].Proceedings of the CSEE,2018,38(12):3578-3587. | |
21 | 胡水星 .大数据及其关键技术的教育应用实证分析[J].远程教育杂志,2015,33(5):46-53. doi:10.3969/j.issn.1672-0008.2015.05.006 |
HU S X .An empirical analysis of big data and its key technology in educational practice[J].Journal of Distance Education,2015,33(5):46-53. doi:10.3969/j.issn.1672-0008.2015.05.006 | |
22 | 刘吉臻,胡勇,曾德良,等 .智能发电厂的架构及特征[J].中国电机工程学报,2017,37(22):6463-6473. |
LIU J Z, HU Y, ZENG D L,et al .Architecture and feature of smart power generation[J].Proceedings of the CSEE,2017,37(22):6463-6473. | |
23 | 刘云霞 .数据预处理[M]. 厦门:厦门大学出版社,2011. doi:10.1109/iceceng.2011.6057992 |
LIU Y X .Data preprocessing[M].Xiamen:Xiamen University Press,2011. doi:10.1109/iceceng.2011.6057992 | |
24 | 陈宝树,党齐民 .Web数据挖掘中的数据预处理[J].计算机工程,2002,28(7):125-127. doi:10.3969/j.issn.1000-3428.2002.07.051 |
CHEN B S, DANG Q M . Data preprocess in Web data mining[J].Computer Engineering,2002,28(7):125-127. doi:10.3969/j.issn.1000-3428.2002.07.051 | |
25 | 刘炳含,付忠广,王永智,等.基于并行计算的大数据挖掘技术及其在电站锅炉性能优化中的应用[J].动力工程学报,2018,38(6):431-439. doi:10.3969/j.issn.1674-7607.2018.06.002 |
LIU B H, FU Z G, WANG Y Z,et al .Big data mining technology based on parallel algorithm and its application in power plant boiler performance optimization[J].Journal of Chinese Society of Power Engineering,2018,38(6):431-439. doi:10.3969/j.issn.1674-7607.2018.06.002 | |
26 | 王大荣,张忠占 .线性回归模型中变量选择方法综述[J].数理统计与管理,2010,29(4):615-627. |
WANG D R, ZHANG Z Z .Variable selection for linear regression models:a survey[J].Journal of Applied Statistics and Management,2010,29(4):615-627. | |
27 | 丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报,2011,40(1):2-10. doi:10.3969/j.issn.1001-0548.2011.01.001 |
DING S F, QI B J, TAN H Y .An overview on theory and algorithm of support vector machines[J].Journal of University of Electronic Science and Technology of China,2011,40(1):2-10. doi:10.3969/j.issn.1001-0548.2011.01.001 |
[1] | 张思海, 李超然, 万广亮, 刘印学, 徐海楠, 黄中, 杨海瑞. 330 MW 循环流化床锅炉深度调峰技术[J]. 发电技术, 2024, 45(2): 199-206. |
[2] | 张安安, 周奇, 李茜, 丁宁, 杨超, 马岩. “双碳”目标下火电厂CO2计量技术研究现状与展望[J]. 发电技术, 2024, 45(1): 51-61. |
[3] | 刘含笑. 双碳背景下电除尘器的节能减碳分析[J]. 发电技术, 2023, 44(5): 738-744. |
[4] | 赵国钦, 蓝茂蔚, 李杨, 周元祥, 江政纬, 甘云华. 基于最小二乘支持向量机的火电厂烟气含氧量预测模型优化研究[J]. 发电技术, 2023, 44(4): 534-542. |
[5] | 安吉振, 郑福豪, 刘一帆, 陈衡, 徐钢. 基于大数据分析的火电机组引风机故障预警研究[J]. 发电技术, 2023, 44(4): 557-564. |
[6] | 张立峰, 李晶, 王智. 基于主成分分析和深度神经网络的声学层析成像温度分布重建[J]. 发电技术, 2023, 44(3): 399-406. |
[7] | 刘含笑, 郦建国, 姚宇平, 崔盈, 郭高飞, 何海涛, 刘美玲, 沈敏超. 低低温电除尘系统对SO3脱除性能研究[J]. 发电技术, 2022, 43(1): 147-154. |
[8] | 冯前伟, 朱仁涵, 徐思达, 刘博, 张杨, 王丰吉, 朱跃. 1 000 MW燃煤机组SCR超低排放关键参数性能评估与分析[J]. 发电技术, 2022, 43(1): 168-174. |
[9] | 陈尚年, 李录平, 张世海, 欧阳敏南, 樊昂, 文贤馗. 汽轮发电机组振动故障诊断技术研究进展[J]. 发电技术, 2021, 42(4): 489-499. |
[10] | 郭栋, 晋银佳, 朱跃. 火电厂废水“零排放”全流程处理中试试验系统设计与构建[J]. 发电技术, 2021, 42(3): 357-362. |
[11] | 安晓雪,苏胜,向军,黄见勋,许积庄,王乐乐,汪一,胡松,尹子骏,王中辉. 燃煤烟气中Hg迁移转化特性研究[J]. 发电技术, 2020, 41(5): 489-496. |
[12] | 朱跃,杨用龙. 燃煤电厂超低排放湿法脱硫治霾影响分析[J]. 发电技术, 2020, 41(3): 295-300. |
[13] | 丁腾波,刘宏波,吴聘. 智慧能源体系信息通信技术构架及实施方案[J]. 发电技术, 2020, 41(2): 150-159. |
[14] | 孙金龙. 330 MW燃煤火电机组脱硝系统的优化研究[J]. 发电技术, 2019, 40(6): 570-579. |
[15] | 陈招妹,刘含笑,崔盈,郭高飞,孟银灿,刘美玲,何海涛,方小伟. 燃煤电厂烟气中SO3的生成、危害、测试及排放特征研究[J]. 发电技术, 2019, 40(6): 564-569. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||