发电技术 ›› 2023, Vol. 44 ›› Issue (5): 703-711.DOI: 10.12096/j.2096-4528.pgt.22027
贾文虎1,2, 徐群杰1,2
收稿日期:
2022-10-10
出版日期:
2023-10-31
发布日期:
2023-10-30
作者简介:
基金资助:
Wenhu JIA1,2, Qunjie XU1,2
Received:
2022-10-10
Published:
2023-10-31
Online:
2023-10-30
Supported by:
摘要:
海上风电是一种绿色能源,目前受到越来越多的关注,海上风电设施防腐蚀技术已成为当下的研究热点。首先,阐述了海洋环境中设备的腐蚀机理,继而介绍了海上风电设施常用防腐技术,包括防腐涂层、阴极防护、预留腐蚀裕量法等;然后,结合实例,重点介绍了飞溅区新型防腐手段中的热喷涂与矿脂包覆覆层防腐蚀技术;最后,简单分析风电设施防腐检测与检修技术,并介绍了我国已建成并网发电的广东珠海桂山风电项目所用的腐蚀防护手段,以期为提高我国海上风电防腐水平提供参考。
中图分类号:
贾文虎, 徐群杰. 海上风电设施防腐蚀技术研究进展[J]. 发电技术, 2023, 44(5): 703-711.
Wenhu JIA, Qunjie XU. Research Progress of Anti-Corrosion Technology for Offshore Wind Power Facilities[J]. Power Generation Technology, 2023, 44(5): 703-711.
防腐措施 | 原理 | 优缺点 |
---|---|---|
腐蚀裕量法 | 通过腐蚀速率与使用寿命计算裕量,增加钢材厚度, 延长寿命 | 没有具体区分不同区域腐蚀速率与特点,增加金属浪费,甚至导致结构变化 |
阴极保护法 | 利用电荷转移原理,牺牲阳极、保护阴极 | 不适用于腐蚀最为严重的飞溅区 |
海工重防腐涂层 | 利用涂料的耐水、吸水、阻隔等优良性能实施防护 | 是包括海上风电等大多数海洋构筑物最常用的防腐方法,性能较为优异 |
添加合金 | 合成性能更为优异的合金,在一定程度上延缓腐蚀 | 效果不明显,不能从根本上解决腐蚀问题 |
热喷涂、热浸镀 | 热喷涂常用在大器件;热浸镀较多使用在小件,通过熔融改性实现防腐 | 干燥情况效果较好,表面若粘附凝结水后与氧气等作用形成电解液,发生电化学腐蚀,缩短寿命 |
包覆覆盖层防护 | 将防腐材料缠绕包裹在钢制结构表面,从而延缓腐蚀 | 复层矿脂包覆技术施工工艺简单,防腐效果优异,主要缺点是成本较高 |
表1 海上风电设施防腐蚀常用方法
Tab. 1 Common anti-corrosion methods for offshore wind power facilities
防腐措施 | 原理 | 优缺点 |
---|---|---|
腐蚀裕量法 | 通过腐蚀速率与使用寿命计算裕量,增加钢材厚度, 延长寿命 | 没有具体区分不同区域腐蚀速率与特点,增加金属浪费,甚至导致结构变化 |
阴极保护法 | 利用电荷转移原理,牺牲阳极、保护阴极 | 不适用于腐蚀最为严重的飞溅区 |
海工重防腐涂层 | 利用涂料的耐水、吸水、阻隔等优良性能实施防护 | 是包括海上风电等大多数海洋构筑物最常用的防腐方法,性能较为优异 |
添加合金 | 合成性能更为优异的合金,在一定程度上延缓腐蚀 | 效果不明显,不能从根本上解决腐蚀问题 |
热喷涂、热浸镀 | 热喷涂常用在大器件;热浸镀较多使用在小件,通过熔融改性实现防腐 | 干燥情况效果较好,表面若粘附凝结水后与氧气等作用形成电解液,发生电化学腐蚀,缩短寿命 |
包覆覆盖层防护 | 将防腐材料缠绕包裹在钢制结构表面,从而延缓腐蚀 | 复层矿脂包覆技术施工工艺简单,防腐效果优异,主要缺点是成本较高 |
1 | 李铮,郭小江,申旭辉,等 .我国海上风电发展关键技术综述[J].发电技术,2022,43(2):186-197. doi:10.12096/j.2096-4528.pgt.22028 |
LI Z, GUO X J, SHEN X H,et al .Summary of technologies for the development of offshore wind power industry in China[J].Power Generation Technology,2022,43(2):186-197. doi:10.12096/j.2096-4528.pgt.22028 | |
2 | 郑黎明,贾科,毕天姝,等 .海上风电接入柔直系统交流侧故障特征及对保护的影响分析[J].电力系统保护与控制,2021,49(20):20-32. doi:10.19783/j.cnki.pspc.201591 |
ZHENG L M, JIA K, BI T S,et al .AC-side fault analysis of a VSC-HVDC transmission system connected to offshore wind farms and the impact on protection[J].Power System Protection and Control,2021,49(20):20-32. doi:10.19783/j.cnki.pspc.201591 | |
3 | 余浩,肖彭瑶,林勇,等 .大规模海上风电高电压穿越研究进展[J].智慧电力,2020,48(3):30-38. |
YU H, XIAO P Y, LIN Y,et al .Review on high voltage ride-through strategies for offshore doubly-fed wind farms [J].Smart Power,2020,48(3):30-38. | |
4 | 胡苏杭,刘碧燕 .海上风电防腐技术现状及研究方向[J].风能,2019 (11):88-91. doi:10.3969/j.issn.1674-9219.2019.11.018 |
HU S H, LIU B Y .Present situation and research direction of anti-corrosion technology for offshore wind power [J].Wind Energy,2019(11):88-91. doi:10.3969/j.issn.1674-9219.2019.11.018 | |
5 | 张国新,黎扬佳,项建强,等 .海上风电混凝土承台温度特性监测与仿真分析[J].水利水电技术(中英文),2022,53(3):1-10. |
ZHANG G X, LI Y J, XIANG J Q,et al .Monitoring and simulation analysis of temperature characteristics of concrete pile-cap foundation for offshore wind turbine[J].Water Resources and Hydropower Engineering,2022,53(3):1-10. | |
6 | 胡丹梅,曾理,陈云浩 .半潜式海上风力机流固耦合特性分析[J].发电技术,2022,43(2):218-226. doi:10.12096/j.2096-4528.pgt.22026 |
HU D M, ZENG L, CHEN Y H .Analysis of fluid-structure coupling characteristics of semi-submersible offshore wind turbines[J].Power Generation Technology,2022,43(2):218-226. doi:10.12096/j.2096-4528.pgt.22026 | |
7 | 邓再芝 .海上风力发电系统的腐蚀与防护[J] .中国重型装备,2011(4):47-49. doi:10.1109/pes.2011.6039338 |
DENG Z Z .Corrosion and protection of offshore wind power system[J].China Heavy Equipment,2011(4):47-49. doi:10.1109/pes.2011.6039338 | |
8 | UMAYA M, NOGUCHI T, UCHIDA M,et al .Wind power generation-development status of offshore wind turbines[J].Mitsubishi Heavy Industries Technical Review,2013,50(3):29. |
9 | 陈君,黄彦良,侯保荣 .低碳钢在浪花飞溅区的腐蚀防护研究进展[J].腐蚀科学与防护技术, 2012,24(4):342-344. doi:10.1007/s11783-011-0280-z |
CHEN J, HUANG Y L, HOU B R .Research progress on corrosion protection of low carbon steel in spray splash zone[J].Corrosion Science and Protection Technology,2012,24(4):342-344. doi:10.1007/s11783-011-0280-z | |
10 | 陈俊鹏 .解读海上风电的防腐蚀研究与应用现状[J].建材与装饰,2020(9):213-214. |
CHEN J P .Interpretation of corrosion prevention research and application status of offshore wind power[J].Journal of Building Materials and Decoration,2020(9):213-214. | |
11 | 李理,范玉鹏,常志明,等 .海洋风电机组防腐蚀技术研究进展[J].分布式能源,2021,6(5): 51-58. |
LI L, FAN Y P, CHANG Z M,et al .Research progress of anti-corrosion technology for offshore wind turbines[J].Distributed Energy,2021,6(5): 51-58. | |
12 | 练宗源,梁云,袁拥军,等 .海水潮差区和浪花飞溅区中钢结构的腐蚀控制方法对比[J].全面腐蚀控制,2017,31(3):75-78. |
LIAN Z Y, LIANG Y, YUAN Y J,et al .The contrast on the corrosion control methods of steel structure in the tidal zone and splash zone[J].Total Corrosion Control,2017,31(3):75-78. | |
13 | 杨春玉,谢俊峰,杜金楠,等 .拉应力对油管防腐层防腐性能的影响[J].全面腐蚀控制,2017, 31(11):65-68. |
YANG C Y, XIE J F, DU J N,et al .The influence of tensile stress on oil tubing antiseptic coating[J].Total Corrosion Control,2017,31(11):65-68. | |
14 | 张斌 .海上风电塔架涂层老化问题分析[J].广东科技,2020,29(5):66-69. |
ZHANG B .The Influence of tensile stress on oil tubing antiseptic coating[J].Guangdong Science and Technology,2020,29(5):66-69. | |
15 | 刘新生,张小伟 .玻璃钢船的成型工艺和连接技术[J].船舶物资与市场,2021,29(10):49-50. |
LIU X S, ZHANG X W .Forming process and connection technology of FRP ship[J].Marine Equipment/Materials & Marketing,2021,29(10):49-50. | |
16 | FAN Z Y, QING X, YANG X,et al .Anticorrosion properties of epoxidized palm olein/epoxy resin as coating materials on low-carbon steel in 3.5% NaCl[J].International Journal of Electrochemical Science,2019,14:7487-7494. doi:10.20964/2019.08.93 |
17 | MOMBER A, IRMER M .Taber abrasive wear resistance of organic offshore wind power coatings at varying normal forces[J].Journal of Coatings Technology and Research,2021,18(3):729-740. doi:10.1007/s11998-020-00437-x |
18 | 张新勃 .牺牲阳极阴极保护有效性测试的必要性[J].中国石油和化工标准与质量,2021,41(17):52-53. doi:10.3969/j.issn.1673-4076.2021.17.026 |
ZHANG X B .Necessity of sacrificial anode cathodic protection effectiveness test[J].China Petroleum and Chemical Standard and Quality,2021,41(17):52-53. doi:10.3969/j.issn.1673-4076.2021.17.026 | |
19 | 贺敬,郭文敢,曾东,等 .外加电流阴极保护技术在海上风电项目中的应用[J].风能,2021(12):92-93. doi:10.3969/j.issn.1674-9219.2021.12.028 |
HE J, GUO W G, ZENG D,et al .Application of impressed current cathodic protection technology in offshore wind power projects[J].Wind Energy,2021(12):92-93. doi:10.3969/j.issn.1674-9219.2021.12.028 | |
20 | YAN G, ZHU X C, LI Y .Anti-corrosion protection strategies for support structures and foundations of wind turbines of offshore wind farms[C]//2009 International Conference on Sustainable Power Generation and Supply.Nanjing,China:IEEE,2009:1-4. doi:10.1109/supergen.2009.5348091 |
21 | ERDOGAN C, SWAIN G .Conceptual sacrificial anode cathodic protection design for offshore wind monopiles[J].Ocean Engineering,2021,235:109339. doi:10.1016/j.oceaneng.2021.109339 |
22 | CHERNOV B B, NUGMANOV A M .Comparative efficiency of different realization methods of cathodic protection for marine structures[J].E3S Web of Conferences,2021:04001. doi:10.1051/e3sconf/202122504001 |
23 | 黄延琦,张俊臣 .海上风电钢管桩防腐系统远程监测技术[J].船舶工程,2020,42(S1):571-574. |
HUANG Y Q, ZHANG J C .Remote monitoring technology of anti-corrosion for steel pipe piles of offshore wind power[J].Ship Engineering,2020,42(S1):571-574. | |
24 | 朱梦伟,王学明,沈巍巍,等 .海洋腐蚀环境下电缆过桥设计研究[J].电力勘测设计,2020,42(S1):571-574. |
ZHU M W, WANG X M, SHEN W W,et al .Study on the design of bridge cable in marine corrosion environment[J].Electric Power Survey & Design,2020,42(S1):571-574. | |
25 | 韩恩厚,陈建敏,宿彦京,等 .海洋工程结构与船舶的腐蚀防护:现状与趋势[J].中国材料进展,2014,33(2):65-76. |
HAN E H, CHEN J M, SU Y J,et al .Corrosion protection techniques of marine engineering structure and ship equipment:current status and future trend[J].Materials China,2014,33(2):65-76. | |
26 | 张晓丽,吕平,梁龙强,等 .海洋浪溅区钢结构的腐蚀与防护研究进展[J].上海涂料,2016,54(4):24-28. doi:10.3969/j.issn.1009-1696.2016.04.007 |
ZHANG X L, LÜ P, LIANG L Q,et al .Research progress on corrosion and protection of steel structures in marine splash area[J].Shanghai Coatings,2016,54(4):24-28. doi:10.3969/j.issn.1009-1696.2016.04.007 | |
27 | 陈君 .低碳钢浪花飞溅区腐蚀和防腐带保护技术研究[D].广州:中国科学院研究生院(海洋研究所),2012. |
CHEN J .Study on corrosion in spray splash zone of low carbon steel and protection technology of anti-corrosion belt[D].Guangzhou:Graduate School of Chinese Academy of Sciences (Institute of Oceanography),2012. | |
28 | 赵书彦,童鑫红,刘福春,等 .环氧富锌涂层防腐蚀性能研究[J].中国腐蚀与防护学报,2019, 39(6):563-570. doi:10.11902/1005.4537.2019.231 |
ZHAO S Y, TONG X H, LIU F C,et al .Corrosion resistance of three Zinc-rich epoxy coatings[J].Journal of Chinese Society for Corrosion and Protection,2019,39(6):563-570. doi:10.11902/1005.4537.2019.231 | |
29 | 曾登峰,陶乃旺,江水旺,等 .海工重防腐涂料NORSOKM-501试验方法介绍及结果讨论[J].涂料工业,2015,45(8):51-56. |
ZENG D F, TAO N W, JIANG S W,et al .NORSOKM-501 test method for heavy-duty anticorrosive marine coatings[J].Paint & Coatings Industry,2015,45(8):51-56. | |
30 | 李旭海,杜丽平 .纳米重防腐涂料在海上风力发电机组中的应用研究[J].节能,2020(1):21-22. |
LI X H, DU L P .Application of nano heavy anti-corrosion coating in offshore wind turbine[J].Energy Conservation,2020(1):21-22. | |
31 | HOSSAIN K M A, EASA S M, LACHEMI M .Evaluation of the effect of marine salts on urban built infrastructure[J].Building and Environment,2009,44(4):713-722. doi:10.1016/j.buildenv.2008.06.004 |
32 | 王开泰,许云波,徐兵,等 .980 MPa级热浸镀钢的新型淬火配分工艺及组织性能[J].金属热处理,2021,46(11):143-147. |
WANG K T, XU Y B, XU B,et al .Novel Q&P process,microstructure and mechanical properties of a 980 MPa grade hot-dip galvanized steel[J].Heat Treatment of Metals,2021,46(11):143-147. | |
33 | 郭太雄,刘常升,刘春富 .热浸镀铝锌合金镀层钢板表面锌花形成的研究进展[J].材料保护,2016,49(2):50-54. |
GUO T X, LIU C S, LIU C F . Research progress on the formation of zinc flower on the surface of hot dip aluminum zinc alloy coated steel plate[J].Materials Protection,2016,49(2):50-54. | |
34 | 张作华,宋广裕 .钢铁金属热喷涂防腐技术[J].涂层与防护,2020,41(6):42-46. |
ZHANG Z H, SONG G Y .Thermal spraying for corrosion control of steel structure[J].Coating and Protection,2020,41(6):42-46. | |
35 | 曹彬,王倩 .耐高温熔融金属侵蚀热喷涂涂层的研究[J]. 宝钢技术,2020(5):9-13. doi:10.3969/j.issn.1008-0716.2020.05.002 |
CAO B, WANG Q .Research on thermal spray coating with corrosion resistance of high temperature molten metal[J].Baosteel Technology,2020(5):9-13. doi:10.3969/j.issn.1008-0716.2020.05.002 | |
36 | 陈散兴,周学杰,张三平,等 .火焰喷涂Al、Zn-Al涂层在舟山地区海洋环境的腐蚀行为[J].腐蚀科学与防护技术,2016,28(5):480-484. |
CHEN S X, ZHOU X J, ZHANG S P,et al .Corrosion behavior of flame spraying coatings of Al and Al-Zn alloy on low carbon steel in marine environment by seaside of Zhoushan island[J].Corrosion Science and Protection Technology,2016,28(5):480-484. | |
37 | MOMBER A, PLAGEMANN P, STENZEL V .Performance and integrity of protective coating systems for offshore wind power structures after three years under offshore site conditions[J].Renewable Energy,2015,74:606-617. doi:10.1016/j.renene.2014.08.047 |
38 | MOMBER A, PLAGEMANN P, STENZEL V .The adhesion of corrosion protection coating systems for offshore wind power constructions after three years under offshore exposure[J].International Journal of Adhesion and Adhesives,2016,65:96-101. doi:10.1016/j.ijadhadh.2015.11.011 |
39 | EOM S H, KIM S S, LEE J B .Assessment of anti-corrosion performances of coating systems for corrosion prevention of offshore wind power steel structures[J]. Coatings,2020,10(10):970. doi:10.3390/coatings10100970 |
40 | 高宏飙,陈强,王静,等 .PTC复层矿脂包覆防腐技术在海上风电的应用[J].中国涂料,2013,28(12):39-43. doi:10.3969/j.issn.1006-2556.2013.12.012 |
GAO H B, CHEN Q, WANG J, al at .Anticorrosion technology application of petrolatum tape and covering(PTC) on offshore wind Farm[J].China Coatings,2013,28(12):39-43. doi:10.3969/j.issn.1006-2556.2013.12.012 | |
41 | 崔芳莹 .海水干湿交替条件下碳钢腐蚀行为及其缓蚀剂性能研究[D].重庆:重庆大学, 2016. |
CUI F Y .Study on the corrosion behavior of mild steel and inhibition effect of inhibitors under wet-dry cyclic conditions[D].Chongqing:Chongqing University,2016. | |
42 | 潘杰,侯保荣,刘佳利,等 .PTC矿脂包覆防腐蚀技术在国内的应用进展[J].腐蚀与防护,2015,36(12):1170-1173. doi:10.11973/fsyfh-201512013 |
PAN J, HOU B R, LIU J L,et al .Advances in application of petrolatum tape cover[J].Corrosion & Protection,2015,36(12):1170-1173. doi:10.11973/fsyfh-201512013 | |
43 | 郑传祥,朱军,苏小芳,等 .海工结构复合材料包覆隔离防腐技术研究[J].化工装备技术,2020,41(5):39-42. |
ZHU C X, ZHU J, SU X F, et al .Research on the technology of coating,isolation and anticorrosion of marine structure composite materials[J].Chemical Equipment Technology,2020,41(5):39-42. | |
44 | QU W J, HUANG Y L, YU X M,et al .Effect of petrolatum tape cover on the hydrogen permeation of AISI4135 steel under marine splash zone conditions[J].International Journal of Electrochemicalence,2015,10:5892-5904. doi:10.1016/s1452-3981(23)17302-0 |
45 | 钱洲亥,王静,周海飞,等 .大气区异型钢结构上复层矿脂包覆防腐技术施工要点[J].电镀与涂饰,2016,35(18):976-979. |
QIAN Z H, WANG J, ZHOU H F, et al .Construction hints of multilayer petrolatum tape and covering anticorrosion technology for irregularly-shaped steel structure at atmospheric zone[J].Electroplating & Finishing,2016,35(18):976-979. | |
46 | 时士峰,徐群杰,云虹,等 .海上风电塔架腐蚀与防护现状[J].腐蚀与防护,2010(11):875-877. |
SHI S F, XU Q J, YUN H,et al .Status of corrosion and protection for offshore wind towers[J].Corrosion & Protection,2010(11):875-877. | |
47 | 李美明,徐群杰,韩杰 .海上风电的防腐蚀研究与应用现状[J].腐蚀与防护,2014,35(6):584-589. |
LI M M, XU Q J, HAN J .Progress of corrosion and protection for offshore wind power[J].Corrosion & Protection,2014,35(6):584-589. | |
48 | HAN J, XU Q J, WEI L,et al .Etching and heating treatment combined approach for superhydrophobic surface on brass substrates and the consequent corrosion resistance[J].Corrosion Science,2016,102: 251-258. doi:10.1016/j.corsci.2015.10.013 |
49 | LIU W, XU Q, HAN J,et al .A novel combination approach for the preparation of superhydrophobic surface on copper and the consequent corrosion resistance[J].Corrosion Science, 2016,110:105-113. doi:10.1016/j.corsci.2016.04.015 |
50 | HE Z H, ZENG Y, ZHOU M,et al .Superhydrophobic films with enhanced corrosion resistance and self-cleaning performance on an Al Alloy[J].Langmuir,2020,37(1):524-541. doi:10.1021/acs.langmuir.0c03222 |
51 | 彭潜 .海上风电结构健康监测工程实践与分析[J].船舶工程,2021,43(S1):81-86. |
PENG Q .Practice and analysis of structural health monitoring engineering of offshore wind power[J].Ship Engineering,2021,43(S1):81-86. | |
52 | KIRCHGEORG T, WEINBERG I, HÖRNIG M,et al .Emissions from corrosion protection systems of offshore wind farms:evaluation of the potential impact on the marine environment[J].Marine Pollution Bulletin,2018,136:257-268. doi:10.1016/j.marpolbul.2018.08.058 |
53 | 张钢,冯宝平,刘碧燕 .浅谈海上风电钢构基础腐蚀疲劳及早期检测[J].风能,2016(1):60-63. doi:10.3969/j.issn.1674-9219.2016.01.019 |
ZHANG G, FENG B P, LIU B Y .Discussion on corrosion fatigue and early detection of offshore wind power steel structure foundation[J].Wind Energy,2016(1):60-63. doi:10.3969/j.issn.1674-9219.2016.01.019 |
[1] | 樊昂, 李录平, 刘瑞, 欧阳敏南, 陈尚年. 不同风速对单桩式海上风电机组塔筒动态特性的影响[J]. 发电技术, 2024, 45(2): 312-322. |
[2] | 严新荣, 张宁宁, 马奎超, 魏超, 杨帅, 潘彬彬. 我国海上风电发展现状与趋势综述[J]. 发电技术, 2024, 45(1): 1-12. |
[3] | 许帅, 杨羽霏, 刚傲, 谢越韬, 张晓明, 刘功鹏. 中欧漂浮式海上风电关键技术与产业链合作路径研究[J]. 发电技术, 2024, 45(1): 13-23. |
[4] | 孙财新, 张波, 唐巍, 周昳鸣, 付明志, 秦猛, 郭小江. 海上风电机组国产化研究与实践[J]. 发电技术, 2023, 44(5): 696-702. |
[5] | 吴荣辉, 刘冬, 郁冶, 牟凯龙, 赵兰浩. 基于浸入边界法的海上风电双向流固耦合数值模拟方法[J]. 发电技术, 2023, 44(1): 44-52. |
[6] | 周昳鸣, 闫姝, 刘鑫, 张波, 郭雨桐, 郭小江. 中国海上风电支撑结构一体化设计综述[J]. 发电技术, 2023, 44(1): 36-43. |
[7] | 刘晓明, 谭祖贶, 袁振华, 刘玉田. 柔性直流接入海上风电并网选址综合优化[J]. 发电技术, 2022, 43(6): 892-900. |
[8] | 董辉, 葛维春, 张诗钽, 刘闯, 楚帅. 海上风电制氢与电能直接外送差异综述[J]. 发电技术, 2022, 43(6): 869-879. |
[9] | 高小童, 秦志龙, 高新宇. 含海上风电-光伏-储能的多能源发输电系统可靠性评估[J]. 发电技术, 2022, 43(4): 626-635. |
[10] | 杨舟, 杨仁炘, 施刚, 张建文. 一种用于多端直流输电系统交流故障穿越的新型控制策略[J]. 发电技术, 2022, 43(2): 268-277. |
[11] | 张智伟, 张建平, 刘明, 纪海鹏, 诸浩君, 周圣荻. 芦潮港海上风资源变化特性分析[J]. 发电技术, 2022, 43(2): 260-267. |
[12] | 邹晓阳, 潘卫国. 海上浮式风机动力学仿真分析研究进展[J]. 发电技术, 2022, 43(2): 249-259. |
[13] | 朱家宁, 张诗钽, 葛维春, 刘闯, 楚帅. 海上风电外送及电能输送技术综述[J]. 发电技术, 2022, 43(2): 236-248. |
[14] | 徐彬, 薛帅, 高厚磊, 彭放. 海上风电场及其关键技术发展现状与趋势[J]. 发电技术, 2022, 43(2): 227-235. |
[15] | 胡丹梅, 曾理, 陈云浩. 半潜式海上风力机流固耦合特性分析[J]. 发电技术, 2022, 43(2): 218-226. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||