发电技术 ›› 2023, Vol. 44 ›› Issue (5): 674-684.DOI: 10.12096/j.2096-4528.pgt.22017
汪丽1, 张欢1, 叶舣2, 赵兴雷2
收稿日期:
2022-01-25
出版日期:
2023-10-31
发布日期:
2023-10-30
作者简介:
基金资助:
Li WANG1, Huan ZHANG1, Yi YE2, Xinglei ZHAO2
Received:
2022-01-25
Published:
2023-10-31
Online:
2023-10-30
Supported by:
摘要:
化学吸收法是捕集燃煤电厂烟气中CO2应用最为广泛的技术之一,但其存在吸收容量较低及再生能耗较高等问题,因此开发新型高效CO2吸收剂代替传统单乙醇胺(MEA)吸收剂是当前研究的重点之一。以质量分数为30%的MEA作为参考标准,研究不同配比的N-氨乙基哌嗪(AEP)+甘氨酸钠(SG)复配溶液对CO2的吸收和解吸性能,通过添加不同助剂调节溶液pH值提高吸收剂再生性能,通过对比吸收剂的吸收量、吸收速率、解吸量、解吸速率、吸收-解吸循环性能以及再生能耗,优选出35%AEP+5%SG+1%柠檬酸为最优复配吸收剂。结果表明,配比为35%AEP+5%SG+1%柠檬酸吸收剂CO2吸收量3.70 mol/L,解吸量为3.55 mol/L,解吸率达96.05%,单位再生能耗为136.75 kJ/mol,与质量分数30%MEA相比,吸收量提高1.18倍,解吸量增加2.17倍,解吸率提高30.93%,再生能耗下降33.90%。经过10次循环试验后,该复配溶液循环稳定性良好,再生性能较优,具有潜在的应用价值。
中图分类号:
汪丽, 张欢, 叶舣, 赵兴雷. N-氨乙基哌嗪与甘氨酸钠CO2吸收剂配方研究[J]. 发电技术, 2023, 44(5): 674-684.
Li WANG, Huan ZHANG, Yi YE, Xinglei ZHAO. Formulation Study of N-Aminoethyl Piperazine and Sodium Glycine CO2 Absorbent[J]. Power Generation Technology, 2023, 44(5): 674-684.
图10 35%AEP+5%SG复配溶液加入不同助剂吸收/解吸量对比图
Fig. 10 Contrast diagram of absorption and desorption capacity of 35%AEP+5%SG complex solution with different additives
图11 35% AEP+5% SG+1%柠檬酸复配溶液循环吸收/解吸量对比图
Fig. 11 Contrast diagram of cyclic absorption and desorption capacity of 35%AEP+5%SG+1% citric acid complex solution
图12 35% AEP+5% SG+1%柠檬酸复配溶液不同气体环境下循环吸收/解吸对比图
Fig. 12 Comparison diagram of cyclic absorption/desorption of 35%AEP+5%SG+1% citric acid complex solution in different gas environments
能耗 | 30%MEA | 35%AEP+5% SG+1%柠檬酸 |
---|---|---|
Qrea/kJ | 10.50 | 22.98 |
Qhea/kJ | 15.21 | 34.46 |
Qeav/kJ | 10.53 | 15.38 |
总能耗Q/kJ | 37.24 | 72.82 |
单位能耗q/(kJ/mol) | 206.87 | 136.75 |
表1 再生能耗数据
Fig. 1 Calculation data of regeneration energy consumption
能耗 | 30%MEA | 35%AEP+5% SG+1%柠檬酸 |
---|---|---|
Qrea/kJ | 10.50 | 22.98 |
Qhea/kJ | 15.21 | 34.46 |
Qeav/kJ | 10.53 | 15.38 |
总能耗Q/kJ | 37.24 | 72.82 |
单位能耗q/(kJ/mol) | 206.87 | 136.75 |
1 | 冯伟忠,李励 .“双碳”目标下煤电机组低碳、零碳和负碳化转型发展路径研究与实践[J].发电技术,2022,43(3):452-461. doi:10.12096/j.2096-4528.pgt.22061 |
FENG W Z, LI L .Research and practice on development path of low-carbon,zero-carbon and negative carbon transformation of coal-fired power units under “double carbon”targets[J].Power Generation Technology,2022,43(3):452-461. doi:10.12096/j.2096-4528.pgt.22061 | |
2 | CHIMIENTI G, DE PADOVA D, ADAMO M,et al .Effects of global warming on mediterranean coral forests[J].Scientific Reports,2021,11(1):1-14. doi:10.1038/s41598-021-00162-4 |
3 | WANG N, AKIMOTO K, NEMET G F .What went wrong?Learning from three decades of carbon capture,utilization and sequestration (CCUS) pilot and demonstration projects[J].Energy Policy,2021,158:112546. doi:10.1016/j.enpol.2021.112546 |
4 | 张茜芸,仲兆平,姚杰 .双碳背景下我国能源产业降碳的主要路径[J].能源科技,2021,19(3):3-6. |
ZHANG Q Y, ZHONG Z P, YAO J .Main path of carbon reduction for China’s energy industry under the background of carbon emission peak and carbon neutrality[J].Energy Science and Technology,2021,19(3):3-6. | |
5 | KILIAN W, REUTER J .Low-energy structure of little Higgs models[J].Physical Review D,2004,70(1):015004. doi:10.1103/physrevd.70.015004 |
6 | PULIDO A, CHEN L, KACZOROWSKI T,et al .Functional materials discovery using energy-structure-function maps[J].Nature,2017,543(7647):657-664. doi:10.1038/nature21419 |
7 | 韩涛,赵瑞,张帅,等 .燃煤电厂二氧化碳捕集技术研究及应用[J].煤炭工程,2017,49(5):24-28. |
HAN T, ZHAO R, ZHANG S,et al .Research and application of carbon dioxide capture technology in coal-fired power plants[J].Coal Engineering,2017,49(5):24-28. | |
8 | 蒋敏华,黄斌 .燃煤发电技术发展展望[J].中国电机工程学报,2012,32(29):1-8. |
JIANG M H, HUANG B .Prospects on coal-fired power generation technology development[J].Proceedings of the CSEE,2012,32(29):1-8. | |
9 | 于海琴,李进,安洪光,等 .火力发电企业 CO2排放量和减排分析[J].北京交通大学学报,2010,34(3):101-105. |
YU H Q, LI J, AN H G,et al .Analysis on carbon dioxide emission and reduction of thermal power plant[J].Beijing Jiaotong University,2010,34(3):101-105. | |
10 | 吕广忠,李振泉,李向良,等 .燃煤电厂 CO2捕集驱油封存技术及应用[J].科技导报,2014,32(1):40-45. |
LÜ G Z, LI Z Q, LI X L,et al .Technology and application of CO2 capture, utilization and storage for coal-fired power plant[J].Technology Review,2014,32(1):40-45. | |
11 | JIANG K, ASHWORTH P .The development of carbon capture utilization and storage (CCUS) research in China:a bibliometric perspective[J].Renewable and Sustainable Energy Reviews,2020,138:110521. doi:10.1016/j.rser.2020.110521 |
12 | 严中华,王建功,朱英刚,等 .考虑碳排放流理论的风-碳捕集-电转气联合新型中长期调度方式[J].智慧电力,2022,50(6):14-21. doi:10.3969/j.issn.1673-7598.2022.06.004 |
YAN Z H, WANG J G, ZHU Y G,et al .New medium-long term dispatching mode of wind-carbon capture-P2G combined system considering carbon emission flow theory[J].Smart Power,2022,50(6):14-21. doi:10.3969/j.issn.1673-7598.2022.06.004 | |
13 | 贠保记,张恩硕,张国,等 .考虑综合需求响应与“双碳”机制的综合能源系统优化运行[J].电力系统保护与控制,2022,50(22):11-19. |
YUN B J, ZHANG E S, ZHANG G,et al .Optimal operation of an integrated energy system considering integrated demand response and a “dual carbon”mechanism[J].Power System Protection and Control,2022,50(22):11-19. | |
14 | 马喜平,沈渭程,甄文喜,等 .基于低碳目标的电气综合能源系统优化调度策略研究[J].电网与清洁能源,2021,37(12):116-122. doi:10.3969/j.issn.1674-3814.2021.12.016 |
MA X P, SHEN W C, ZHEN W X,et al .A study on the optimal scheduling strategy of electric-gas-thermal integrated energy system based on low carbon target[J].Power System and Clean Energy,2021,37(12):116-122. doi:10.3969/j.issn.1674-3814.2021.12.016 | |
15 | 黄斌,刘练波,许世森,等 .燃煤电站 CO2捕集与处理技术的现状与发展[J].电力设备,2008,9(5):3-6. |
HUANG B, LIU L B, XU S S,et al .Current status and development of CO2 capture and treatment technology in coal-fired power plants[J].Electric Power Equipment,2008,9(5):3-6. | |
16 | FIGUEROA J D, FOUT T, PLASYNSKI S,et al .Advances in CO2 capture technology:the US department of energy’s carbon sequestration program[J].International Journal of Greenhouse Gas Control,2008,2(1):9-20. doi:10.1016/s1750-5836(07)00094-1 |
17 | LI B, DUAN Y, LUEBKE D,et al .Advances in CO2 capture technology:a patent review[J].Applied Energy,2013,102:1439-1447. doi:10.1016/j.apenergy.2012.09.009 |
18 | BORHANI T N, WANG M .Role of solvents in CO2 capture processes:the review of selection and design methods[J].Renewable and Sustainable Energy Reviews,2019,114:109299. doi:10.1016/j.rser.2019.109299 |
19 | GOTO K, OKABE H, SHIMIZU S,et al .Evaluation method of novel absorbents for CO2 capture[J].Energy Procedia,2009,1(1):1083-1089. doi:10.1016/j.egypro.2009.01.143 |
20 | MORES P, SCENNA N, MUSSATI S .Post-combustion CO2 capture process:equilibrium stage mathematical model of the chemical absorption of CO2 into monoethanolamine (MEA) aqueous solution[J].Chemical Engineering Research and Design,2011,89(9):1587-1599. doi:10.1016/j.cherd.2010.10.012 |
21 | OH S Y, BINNS M, CHO H,et al .Energy minimization of MEA-based CO2 capture process[J].Applied Energy,2016,169:353-362. doi:10.1016/j.apenergy.2016.02.046 |
22 | AYANDUNTAN O L, RAPHAEL O I .Kinetics of the oxidative degradation of CO2 loaded and concentrated aqueous MEA-MDEA blends during CO2 absorption from flue gas streams[J].Industrial & Engineering Chemistry Research,2006,45(8):2601-2607. doi:10.1021/ie050560c |
23 | HO-JUN S, SEUNGMOON L, SANJEEV M,et al .Solubilities of carbon dioxide in aqueous solutions of sodium glycinate[J].Fluid Phase Equilibria,2006,246(1/2):1-5. doi:10.1016/j.fluid.2006.05.012 |
24 | SINGH P, NIEDERER J P M, VERSTEEG G F .Structure and activity relationships for amine-based CO2 absorbents-I[J].International Journal of Greenhouse Gas Control,2007,1(1):5-10. doi:10.1016/s1750-5836(07)00015-1 |
25 | SINGH P, NIEDERER J P M, VERSTEEG G F .Structure and activity relationships for amine-based CO2 absorbents-II[J].Chemical Engineering Research and Design,2009,87(2):135-144. doi:10.1016/j.cherd.2008.07.014 |
26 | CHOI J H, KIM Y E, NAM S C,et al .CO2 absorption characteristics of a piperazine derivative with primary,secondary,and tertiary amino groups[J].Korean Journal of Chemical Engineering,2016,33(11):3222-3230. doi:10.1007/s11814-016-0180-9 |
27 | VAN HOLST J, KERSTEN S R A, HOGENDOORN K J A .Physiochemical properties of several aqueous potassium amino acid salts[J].Journal of Chemical and Engineering Data,2008,53(6):1286-1291. doi:10.1021/je700699u |
28 | KUMAR P S, HOGENDOORN J A, VERSTEEG G F .Kinetics of the reaction of CO2 with aqueous potassium salt of taurine and glycine[J].AIChE Journal,2003,49(1):203-213. doi:10.1002/aic.690490118 |
29 | HARRIS F, KURNIA K A, MUTALIB M I A,et al .Solubilities of carbon dioxide and densities of aqueous sodium glycinate solutions before and after CO2 absorption[J].Journal of Chemical & Engineering Data,2009,54(1):144-147. doi:10.1021/je800672r |
30 | CAPLOW M .Kinetics of carbamate formation and breakdown[J].Journal of the American Chemical Society,1968,90(24):6795-6803. doi:10.1021/ja01026a041 |
31 | DANCKWERTS P .The reaction of CO2 with ethanolamines[J].Chemical Engineering Science,1979,34(4):443-446. doi:10.1016/0009-2509(79)85087-3 |
32 | BONENFANT D, MIMEAULT M, HAUSLER R .Determination of the structural features of distinct amines important for the absorption of CO2 and regeneration in aqueous solution[J].Industrial & Engineering Chemistry Research,2003,42(14):3179-3184. doi:10.1021/ie020738k |
33 | LITTEL R J, VAN SWAAIJ W P M, VERSTEEG G F .Kinetics of carbon dioxide with tertiary amines in aqueous solution[J].AIChE Journal,1990,36(11):1633-1640. doi:10.1002/aic.690361103 |
34 | CHOI J H, KIM Y E, NAM S C,et al .CO2 absorption characteristics of a piperazine derivative with primary,secondary,and tertiary amino groups[J].Korean Journal of Chemical Engineering,2016,33(11):1-9. doi:10.1007/s11814-016-0180-9 |
35 | Zohreh K, Ahad G, Amir H M S,et al .The effect of solid adsorbents in Triethanolamine (TEA) solution for enhanced CO2 absorption rate[J].Research on Chemical Intermediates,221,47:4349-4368. doi:10.1007/s11164-021-04532-5 |
36 | EIMER D, SJOVOLL M, ELDRUP N,et al .New thinking in CO2 removal[C]//Nordic Symposium.Tampere,Finland:Tampere University,2003:128-136. |
[1] | 袁鑫, 刘骏, 陈衡, 潘佩媛, 徐钢, 王修彦. 碳捕集技术应用对燃煤机组调峰能力的影响[J]. 发电技术, 2024, 45(3): 373-381. |
[2] | 张宏伟, 张永生, 汪涛, 王家伟. 电厂燃煤飞灰固化脱硫污泥重金属铅特性研究[J]. 发电技术, 2024, 45(3): 527-534. |
[3] | 刘含笑. 双碳背景下电除尘器的节能减碳分析[J]. 发电技术, 2023, 44(5): 738-744. |
[4] | 胡道成, 王睿, 赵瑞, 孙楠楠, 徐冬, 刘丽影. 二氧化碳捕集技术及适用场景分析[J]. 发电技术, 2023, 44(4): 502-513. |
[5] | 罗志刚, 何成兵, 孟浩然, 刘国栋, 沈鹏, 张军, 张浩亮. 燃煤电厂SCR脱硝系统精准控氨优化方法研究[J]. 发电技术, 2023, 44(4): 525-533. |
[6] | 高志刚, 陈福春, 王家伟, 汪涛, 张永生. 600 MW褐煤机组烟气汞排放及灰特性研究[J]. 发电技术, 2023, 44(4): 543-549. |
[7] | 尹桃柱, 张永生, 汪涛, 王家伟. 硫掺杂多孔碳材料的制备及其对脱硫废水中重金属的电吸附性能研究[J]. 发电技术, 2023, 44(3): 382-391. |
[8] | 吉攀. 燃煤电厂烟气中氨脱除及分布机理研究[J]. 发电技术, 2023, 44(3): 392-398. |
[9] | 刘含笑, 郭高飞. 袋式除尘器脱Hg特性研究[J]. 发电技术, 2023, 44(2): 193-200. |
[10] | 刘含笑, 郭高飞, 陈招妹. 超低排放机组湿式电除尘器多污染物减排及能效测试研究[J]. 发电技术, 2023, 44(1): 94-99. |
[11] | 朱京冀, 徐义书, 徐静颖, 王华坤, 刘小伟, 于敦喜, 马晶晶, 徐明厚. 掺烧氨燃料对煤挥发分火焰特性及颗粒物生成的影响[J]. 发电技术, 2022, 43(6): 908-917. |
[12] | 张欢, 汪丽, 叶舣, 赵兴雷. 乙二烯三胺与三乙醇胺混合胺溶液CO2吸收剂研究[J]. 发电技术, 2022, 43(4): 609-617. |
[13] | 喻小伟, 匡萃杰. 尿素热解制氨工艺在1000MW燃煤电厂的应用与优化[J]. 发电技术, 2022, 43(2): 367-372. |
[14] | 刘含笑, 郦建国, 姚宇平, 崔盈, 郭高飞, 何海涛, 刘美玲, 沈敏超. 低低温电除尘系统对SO3脱除性能研究[J]. 发电技术, 2022, 43(1): 147-154. |
[15] | 洪志刚,张杨,刘永生,朱跃. 燃煤电厂烟气非常规污染物检测与协同控制技术研究综述[J]. 发电技术, 2020, 41(5): 517-526. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||