发电技术 ›› 2022, Vol. 43 ›› Issue (2): 278-286.DOI: 10.12096/j.2096-4528.pgt.22005
张永蕊1,2, 阎洁1,2, 林爱美1,2, 韩爽1,2, 刘永前1,2
收稿日期:
2022-01-18
出版日期:
2022-04-30
发布日期:
2022-05-13
作者简介:
基金资助:
Yongrui ZHANG1,2, Jie YAN1,2, Aimei LIN1,2, Shuang HAN1,2, Yongqian LIU1,2
Received:
2022-01-18
Published:
2022-04-30
Online:
2022-05-13
Supported by:
摘要:
数值天气预报(numerical weather prediction,NWP)修正是提升风光功率预测精度的关键技术之一,但目前鲜有对NWP辐照度修正的研究,同时现有的NWP风速修正方法大多只考虑单一位置,忽略了风速间的时空耦合特性,影响修正效果。针对这一问题,提出了考虑区域风光资源时空相关性的多点NWP风速和辐照度集中式修正方法。以区域内多个风电场和光伏电站的实测风速、辐照度数据为修正模型的学习目标,建立基于注意力神经网络的多点NWP集中修正模型,同时修正多个具有一定相关性的场站级NWP数据。结合某区域8个风电场和7个光伏电站的NWP数据和历史风速/辐照度数据,对所提方法进行验证,结果表明,相比于传统的单点NWP修正方法,所提方法能够有效提高NWP精度。
中图分类号:
张永蕊, 阎洁, 林爱美, 韩爽, 刘永前. 多点数值天气预报风速和辐照度集中式修正方法研究[J]. 发电技术, 2022, 43(2): 278-286.
Yongrui ZHANG, Jie YAN, Aimei LIN, Shuang HAN, Yongqian LIU. Integrated Correction Method of Multi-point Numerical Weather Prediction Wind Speed and Irradiance[J]. Power Generation Technology, 2022, 43(2): 278-286.
网络层 | 神经元个数 |
---|---|
全连接层1 | 32 |
全连接层2 | 64 |
全连接层3 | 32 |
表1 隐藏层结构参数
Tab. 1 Network structure parameters of hidden layer
网络层 | 神经元个数 |
---|---|
全连接层1 | 32 |
全连接层2 | 64 |
全连接层3 | 32 |
电站 | 原始 误差 | 单点修正误差 | 集中式修正误差 | |||
---|---|---|---|---|---|---|
SVM | BPNN | TCN | 本文 模型 | |||
SP1 | 171.37 | 85.99 | 88.67 | 77.49 | 79.02 | 76.26 |
SP2 | 226.33 | 186.00 | 132.13 | 135.24 | 144.72 | 125.72 |
SP3 | 231.55 | 204.50 | 110.20 | 108.72 | 117.97 | 106.67 |
SP4 | 115.39 | 100.65 | 112.91 | 101.39 | 110.24 | 96.49 |
SP5 | 129.48 | 129.55 | 131.84 | 131.76 | 138.72 | 128.51 |
SP6 | 132.59 | 79.20 | 92.15 | 80.54 | 76.04 | 78.41 |
SP7 | 116.03 | 105.22 | 115.76 | 108.65 | 110.45 | 104.75 |
表2 不同修正方法下NWP辐照度均方根误差 (W/m2)
Tab. 2 RMSE of NWP irradiance in different correction methods
电站 | 原始 误差 | 单点修正误差 | 集中式修正误差 | |||
---|---|---|---|---|---|---|
SVM | BPNN | TCN | 本文 模型 | |||
SP1 | 171.37 | 85.99 | 88.67 | 77.49 | 79.02 | 76.26 |
SP2 | 226.33 | 186.00 | 132.13 | 135.24 | 144.72 | 125.72 |
SP3 | 231.55 | 204.50 | 110.20 | 108.72 | 117.97 | 106.67 |
SP4 | 115.39 | 100.65 | 112.91 | 101.39 | 110.24 | 96.49 |
SP5 | 129.48 | 129.55 | 131.84 | 131.76 | 138.72 | 128.51 |
SP6 | 132.59 | 79.20 | 92.15 | 80.54 | 76.04 | 78.41 |
SP7 | 116.03 | 105.22 | 115.76 | 108.65 | 110.45 | 104.75 |
电站 | 原始 误差 | 单点修正误差 | 集中式修正误差 | |||
---|---|---|---|---|---|---|
SVM | BPNN | TCN | 本文 模型 | |||
SP1 | 87.16 | 43.58 | 52.02 | 46.28 | 43.36 | 40.40 |
SP2 | 116.17 | 100.36 | 74.88 | 70.66 | 76.62 | 61.23 |
SP3 | 110.71 | 148.42 | 57.25 | 58.22 | 59.81 | 53.11 |
SP4 | 56.09 | 47.10 | 66.44 | 52.56 | 51.62 | 45.28 |
SP5 | 60.46 | 65.21 | 71.60 | 65.42 | 69.88 | 61.19 |
SP6 | 67.56 | 36.00 | 54.46 | 39.64 | 40.99 | 35.54 |
SP7 | 57.88 | 46.95 | 63.63 | 57.10 | 51.51 | 48.03 |
表3 不同修正方法下NWP辐照度平均绝对误差 (W/m2)
Tab. 3 MAE of NWP irradiance in different correction methods
电站 | 原始 误差 | 单点修正误差 | 集中式修正误差 | |||
---|---|---|---|---|---|---|
SVM | BPNN | TCN | 本文 模型 | |||
SP1 | 87.16 | 43.58 | 52.02 | 46.28 | 43.36 | 40.40 |
SP2 | 116.17 | 100.36 | 74.88 | 70.66 | 76.62 | 61.23 |
SP3 | 110.71 | 148.42 | 57.25 | 58.22 | 59.81 | 53.11 |
SP4 | 56.09 | 47.10 | 66.44 | 52.56 | 51.62 | 45.28 |
SP5 | 60.46 | 65.21 | 71.60 | 65.42 | 69.88 | 61.19 |
SP6 | 67.56 | 36.00 | 54.46 | 39.64 | 40.99 | 35.54 |
SP7 | 57.88 | 46.95 | 63.63 | 57.10 | 51.51 | 48.03 |
电站 | 原始误差 | 单点修正误差 | 集中式修正误差 | |||
---|---|---|---|---|---|---|
SVM | BPNN | TCN | 本文模型 | |||
WF1 | 2.54 | 2.38 | 2.48 | 2.40 | 2.31 | 2.21 |
WF2 | 3.31 | 3.00 | 3.11 | 2.96 | 3.07 | 2.97 |
WF3 | 3.17 | 2.98 | 3.05 | 2.94 | 2.98 | 2.95 |
WF4 | 2.51 | 2.22 | 2.44 | 2.32 | 2.41 | 2.20 |
WF5 | 2.41 | 2.31 | 2.34 | 2.37 | 2.28 | 2.24 |
WF6 | 2.64 | 2.44 | 2.40 | 1.98 | 2.10 | 1.91 |
WF7 | 2.91 | 2.78 | 2.68 | 2.92 | 2.72 | 2.66 |
WF8 | 2.92 | 2.80 | 2.74 | 2.77 | 2.65 | 2.56 |
表4 不同修正方法下NWP风速均方根误差 (m/s)
Tab. 4 RMSE of wind speed in different correction methods
电站 | 原始误差 | 单点修正误差 | 集中式修正误差 | |||
---|---|---|---|---|---|---|
SVM | BPNN | TCN | 本文模型 | |||
WF1 | 2.54 | 2.38 | 2.48 | 2.40 | 2.31 | 2.21 |
WF2 | 3.31 | 3.00 | 3.11 | 2.96 | 3.07 | 2.97 |
WF3 | 3.17 | 2.98 | 3.05 | 2.94 | 2.98 | 2.95 |
WF4 | 2.51 | 2.22 | 2.44 | 2.32 | 2.41 | 2.20 |
WF5 | 2.41 | 2.31 | 2.34 | 2.37 | 2.28 | 2.24 |
WF6 | 2.64 | 2.44 | 2.40 | 1.98 | 2.10 | 1.91 |
WF7 | 2.91 | 2.78 | 2.68 | 2.92 | 2.72 | 2.66 |
WF8 | 2.92 | 2.80 | 2.74 | 2.77 | 2.65 | 2.56 |
电站 | 原始误差 | 单点修正误差 | 集中式修正误差 | |||
---|---|---|---|---|---|---|
SVM | BPNN | TCN | 本文模型 | |||
WF1 | 1.92 | 1.80 | 1.78 | 1.80 | 1.75 | 1.65 |
WF2 | 2.56 | 2.34 | 2.48 | 2.27 | 2.38 | 2.29 |
WF3 | 2.39 | 2.30 | 2.33 | 2.27 | 2.30 | 2.27 |
WF4 | 1.90 | 1.65 | 1.78 | 1.73 | 1.82 | 1.64 |
WF5 | 1.82 | 1.76 | 1.80 | 1.78 | 1.71 | 1.67 |
WF6 | 1.96 | 1.90 | 1.65 | 1.54 | 1.65 | 1.52 |
WF7 | 2.03 | 1.91 | 1.89 | 2.03 | 1.87 | 1.79 |
WF8 | 2.92 | 2.80 | 2.34 | 1.92 | 1.81 | 1.72 |
表5 不同修正方法下NWP风速平均绝对误差 (m/s)
Tab. 5 MAE of wind speed in different correction methods
电站 | 原始误差 | 单点修正误差 | 集中式修正误差 | |||
---|---|---|---|---|---|---|
SVM | BPNN | TCN | 本文模型 | |||
WF1 | 1.92 | 1.80 | 1.78 | 1.80 | 1.75 | 1.65 |
WF2 | 2.56 | 2.34 | 2.48 | 2.27 | 2.38 | 2.29 |
WF3 | 2.39 | 2.30 | 2.33 | 2.27 | 2.30 | 2.27 |
WF4 | 1.90 | 1.65 | 1.78 | 1.73 | 1.82 | 1.64 |
WF5 | 1.82 | 1.76 | 1.80 | 1.78 | 1.71 | 1.67 |
WF6 | 1.96 | 1.90 | 1.65 | 1.54 | 1.65 | 1.52 |
WF7 | 2.03 | 1.91 | 1.89 | 2.03 | 1.87 | 1.79 |
WF8 | 2.92 | 2.80 | 2.34 | 1.92 | 1.81 | 1.72 |
1 | 龚莺飞,鲁宗相,乔颖,等 .光伏功率预测技术[J].电力系统自动化,2016,40(4):140-151. doi:10.7500/AEPS20150711003 |
GONG Y F, LU Z X, QIAO Y,et al .An overview of photovoltaic energy system output forecasting technology[J].Automation of Electric Power Systems,2016,40(4):140-151. doi:10.7500/AEPS20150711003 | |
2 | 乔颖,鲁宗相,闵勇 .提高风电功率预测精度的方法[J].电网技术,2017,41(10):3261-3269. |
QIAO Y, LU Z X, MIN Y .Research & application of raising wind power prediction accuracy[J].Power System Technology,2017,41(10):3261-3269. | |
3 | 叶林,赵永宁 .基于空间相关性的风电功率预测研究综述[J].电力系统自动化,2014,38(14):126-135. doi:10.7500/AEPS20130911004 |
YE L, ZHAO Y N .A review on wind power prediction based on spatial correlation approach[J].Automation of Electric Power Systems,2014,38(14):126-135. doi:10.7500/AEPS20130911004 | |
4 | 李科,黄东晨,陶子彬,等 .基于偏最大信息系数与组合XGBoost的短期风功率预测[J].电力工程技术,2021,40(6):95-102. doi:10.12158/j.2096-3203.2021.06.012 |
LI K, HUANG D C, TAO Z B,et al .Combined XGBoost short-term wind power forecasting model based on partial maximum information coefficient[J].Electric Power Engineering Technology,2021,40(6):95-102. doi:10.12158/j.2096-3203.2021.06.012 | |
5 | 王军辉,李民,畅蓬博,等 .基于相似日误差校正的光伏功率预测[J].电网与清洁能源,2020,36(11):134-138. doi:10.3969/j.issn.1674-3814.2020.11.018 |
WANG J H, LI M, CHANG P B,et al .Photovoltaic power prediction based on similar day error correction[J].Power System and Clean Energy,2020,36(11):134-138. doi:10.3969/j.issn.1674-3814.2020.11.018 | |
6 | 唐雅洁,龚迪阳,倪筹帷,等 .基于邻域前向时序最优组合的分布式光伏超短期功率预测[J].浙江电力,2021,40(10):95-101. doi:10.1109/ispec53008.2021.9735434 |
TANG Y J, GONG D Y, NI C W,et al .Ultra short-term distributed photovoltaic power forecasting based on neighboring optimal forward sequential combination[J].Zhejiang Electric Power,2021,40(10):95-101. doi:10.1109/ispec53008.2021.9735434 | |
7 | 刘栋,魏霞,王维庆,等 .基于SSA-ELM的短期风电功率预测[J].智慧电力,2021,49(6):53-59. doi:10.3969/j.issn.1673-7598.2021.06.009 |
LIU D, WEI X, WANG W Q,et al .Short-term wind power prediction based on SSA-ELM[J].Smart Power,2021,49(6):53-59. doi:10.3969/j.issn.1673-7598.2021.06.009 | |
8 | 吉锌格,李慧,刘思嘉,等 .基于MIE-LSTM的短期光伏功率预测[J].电力系统保护与控制,2020,48(7):50-57. |
JI X G, LI H, LIU S J,et al .Short-term photovoltaic power forecasting based on MIE-LSTM[J].Power System Protection and Control,2020,48(7):50-57. | |
9 | 薛禹胜,郁琛,赵俊华,等 .关于短期及超短期风电功率预测的评述[J].电力系统自动化,2015,39(6):141-151. doi:10.7500/AEPS20141218003 |
XUE Y S, YU C, ZHAO J H,et al .A review on short-term and ultra-short-term wind power prediction[J].Automation of Electric Power Systems,2015,39(6):141-151. doi:10.7500/AEPS20141218003 | |
10 | 符杨,郑紫宸,时帅,等 .考虑气象相似性与数值天气预报修正的海上风功率预测[J].电网技术,2019,43(4):1253-1260. doi:10.13335/j.1000-3673.pst.2018.1373 |
FU Y, ZHENG Z C, SHI S,et al .Offshore wind power forecasting considering meteorological similarity and NWP correction[J].Power System Technology,2019,43(4):1253-1260. doi:10.13335/j.1000-3673.pst.2018.1373 | |
11 | YIN W S, HAN Y T, ZHOU H,et al .A novel non-iterative correction method for short-term photovoltaic power forecasting[J].Renewable Energy,2020,159:23-32. doi:10.1016/j.renene.2020.05.134 |
12 | GIGONI L, BETTI A, CRISOSTOMI E,et al .Day-ahead hourly forecasting of power generation from photovoltaic plants[J].IEEE Transactions on Sustainable Energy,2018,9(2):831-842. doi:10.1109/tste.2017.2762435 |
13 | 杨正瓴,王如雪,乔健,等 .大气压的差值对风速空间相关性预测的影响分析[J].发电技术,2020,41(6):617-624. doi:10.12096/j.2096-4528.pgt.19126 |
YANG Z L, WANG R X, QIAO J,et al .Analysis of the influence of atmospheric pressure difference on spatial correlation prediction of wind speed[J].Power Generation Technology,2020,41(6):617-624. doi:10.12096/j.2096-4528.pgt.19126 | |
14 | 吴攀 .光伏发电系统发电功率预测[J].发电技术,2020,41(3):231-236. doi:10.12096/j.2096-4528.pgt.19113 |
WU P .Power forecasting of photovoltaic power generation system[J].Power Generation Technology,2020,41(3):231-236. doi:10.12096/j.2096-4528.pgt.19113 | |
15 | PEARRE N S, SWAN L G .Statistical approach for improved wind speed forecasting for wind power production[J].Sustainable Energy Technologies and Assessments,2018,27:180-191. doi:10.1016/j.seta.2018.04.010 |
16 | CHENG W Y Y, LIU Y, BOURGEOIS A J,et al .Short-term wind forecast of a data assimilation/weather forecasting system with wind turbine anemometer measurement assimilation[J].Renewable Energy,2017,107:340-351. doi:10.1016/j.renene.2017.02.014 |
17 | HOOLOHAN V, TOMLIN A S, COCKERILL T .Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data[J].Renewable Energy,2018,126:1043-1054. doi:10.1016/j.renene.2018.04.019 |
18 | 胡帅,向月,沈晓东,等 .计及气象因素和风速空间相关性的风电功率预测模型[J].电力系统自动化,2021,45(7):28-36. doi:10.7500/AEPS20200218012 |
HU S, XIANG Y, SHEN X D,et al .Wind power prediction model considering meteorological factor and spatial correlation of wind speed[J].Automation of Electric Power Systems,2021,45(7):28-36. doi:10.7500/AEPS20200218012 | |
19 | HU S, XIANG Y, ZHANG H,et al .Hybrid forecasting method for wind power integrating spatial correlation and corrected numerical weather prediction[J].Applied Energy,2021,293:116951. doi:10.1016/j.apenergy.2021.116951 |
20 | 刘晓楠,周介圭,贾宏杰,等 .基于非参数核密度估计与数值天气预报的风速预测修正方法[J].电力自动化设备,2017,37(10):15-20. |
LIU X N, ZHOU J G, JIA H J,et al .Correction method of wind speed prediction based on non-parametric kernel density estimation and numerical weather prediction[J].Electric Power Automation Equipment,2017,37(10):15-20. | |
21 | ZJAVKA L .Wind speed forecast correction models using polynomial neural networks[J].Renewable Energy,2015,83:998-1006. doi:10.1016/j.renene.2015.04.054 |
22 | LIU Y, WANG Y, LI L,et al .Numerical weather prediction wind correction methods and its impact on computational fluid dynamics based wind power forecasting[J].Journal of Renewable & Sustainable Energy,2016,8(3):770-778. doi:10.1063/1.4950972 |
23 | FEDERICO C, MASSIMILIANO B .Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output[J].Applied Energy,2012,99:154-166. doi:10.1016/j.apenergy.2012.03.054 |
24 | LOPES F M, CONCEIO R, SILVA H G,et al .Improved ECMWF forecasts of direct normal irradiance:A tool for better operational strategies in concentrating solar power plants[J].Renewable Energy,2021,163:755-771. doi:10.1016/j.renene.2020.08.140 |
25 | YE L, ZHAO Y, ZENG C,et al .Short-term wind power prediction based on spatial model[J].Renewable Energy,2017,101:1067-1074. doi:10.1016/j.renene.2016.09.069 |
26 | BUHAN S, OZKAZANC Y, CADIRCI I .Wind pattern recognition and reference wind mast data correlations with NWP for improved wind-electric power forecasts[J].IEEE Transactions on Industrial Informatics,2017,12(3):991-1004. |
27 | 丛智慧,刘倩,刘永前,等 .基于敏感性因素分析的数值天气预报修正方法[J].分布式能源,2020,5(5):8-15. |
CONG Z H, LIU Q, LIU Y Q,et al .Correction method of numerical weather prediction based on sensitivity factor analysis[J].Distributed Energy,2020,5(5):8-15. | |
28 | WANG H, HAN S, LIU Y Q,et al .Sequence transfer correction algorithm for numerical weather prediction wind speed and its application in a wind power forecasting system[J].Applied Energy,2019,237:1-10. doi:10.1016/j.apenergy.2018.12.076 |
29 | 薛禹胜,陈宁,王树民,等 .关于利用空间相关性预测风速的评述[J].电力系统自动化,2017,41(10):161-169. doi:10.7500/AEPS20170109002 |
XUE Y S, CHEN N, WANG S M,et al .Ultra-short term wind speed prediction using spatial correlation[J].Automation of Electric Power System,2017,41(10):161-169. doi:10.7500/AEPS20170109002 | |
30 | ZHU Q, CHEN J, SHI D,et al .Learning temporal and spatial correlations jointly:a unified framework for wind speed prediction[J].IEEE Transactions on Sustainable Energy,2019,11(1):509-523. doi:10.1109/tste.2019.2897136 |
31 | YAN J, ZHANG H, LIU Y Q,et al .Forecasting the high penetration of wind power on multiple scales using multi-to-multi mapping[J].IEEE Transactions on Power Systems,2017,33(3):3276-3284. doi:10.1109/tpwrs.2017.2787667 |
[1] | 张小莲, 孙啊传, 郝思鹏, 许乐妍, 武启川. 风电场参与电网调频的多机协同控制策略[J]. 发电技术, 2024, 45(3): 448-457. |
[2] | 王进钊, 严干贵, 刘侃. 基于交替方向隐式平衡截断法的直驱风电场次同步振荡分析的模型降阶研究[J]. 发电技术, 2023, 44(6): 850-858. |
[3] | 康佳乐, 余浩, 段瑶, 陈武晖, 王丹辉. 风电场次同步振荡等值建模方法研究[J]. 发电技术, 2022, 43(6): 880-891. |
[4] | 陈晓光, 杨秀媛, 王镇林, 王浩扬. 考虑多目标优化模型的风电场储能容量配置方案[J]. 发电技术, 2022, 43(5): 718-730. |
[5] | 张智伟, 张建平, 刘明, 纪海鹏, 诸浩君, 周圣荻. 芦潮港海上风资源变化特性分析[J]. 发电技术, 2022, 43(2): 260-267. |
[6] | 徐彬, 薛帅, 高厚磊, 彭放. 海上风电场及其关键技术发展现状与趋势[J]. 发电技术, 2022, 43(2): 227-235. |
[7] | 李铮, 郭小江, 申旭辉, 汤海雁. 我国海上风电发展关键技术综述[J]. 发电技术, 2022, 43(2): 186-197. |
[8] | 杨舟, 杨仁炘, 施刚, 张建文. 一种用于多端直流输电系统交流故障穿越的新型控制策略[J]. 发电技术, 2022, 43(2): 268-277. |
[9] | 罗耿. 山地光伏阵列布置方法和排间距计算[J]. 发电技术, 2022, 43(2): 320-327. |
[10] | 黄树帮, 陈耀, 金宇清. 碳中和背景下多通道特征组合超短期风电功率预测[J]. 发电技术, 2021, 42(1): 60-68. |
[11] | 杨正瓴, 王如雪, 乔健, 张玺, 杨钊, 张军. 大气压的差值对风速空间相关性预测的影响分析[J]. 发电技术, 2020, 41(6): 617-624. |
[12] | 刘厦, 孙哲, 仇梓峰, 胡炎. 基于简单线性迭代聚类优化的无人机图像去雾算法及其在风电场中的应用[J]. 发电技术, 2020, 41(6): 608-616. |
[13] | 金鑫城,杨秀媛. 基于失真数据降噪的数据预处理方法及其在风电功率预测中的应用[J]. 发电技术, 2020, 41(4): 447-451. |
[14] | 朱月,沙俊民,赵静. 含不同机组风电场低电压穿越能力仿真研究[J]. 发电技术, 2020, 41(3): 328-333. |
[15] | 吴攀. 光伏发电系统发电功率预测[J]. 发电技术, 2020, 41(3): 231-236. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||