发电技术 ›› 2022, Vol. 43 ›› Issue (2): 175-185.DOI: 10.12096/j.2096-4528.pgt.22042
• 海上风力发电技术 • 下一篇
房方1, 梁栋炀1, 刘亚娟1, 胡阳1, 刘吉臻2
收稿日期:
2022-02-18
出版日期:
2022-04-30
发布日期:
2022-05-13
作者简介:
基金资助:
Fang FANG1, Dongyang LIANG1, Yajuan LIU1, Yang HU1, Jizhen LIU2
Received:
2022-02-18
Published:
2022-04-30
Online:
2022-05-13
Supported by:
摘要:
建设海上风电对实现“双碳”目标、构建以新能源为主体的新型电力系统意义重大。远离陆地及复杂海况使海上风电机组的控制和运维面临诸多挑战,这些挑战是海上风电大规模建设中必须关注和解决的关键问题。总结了当前海上风电发展趋势及相关研究进展,分析了海上风电机组控制与运维面临的主要难题,从智能控制与智能运维两方面梳理了海上风电关键技术,结果可为开展本领域前沿理论与技术研究提供参考。
中图分类号:
房方, 梁栋炀, 刘亚娟, 胡阳, 刘吉臻. 海上风电智能控制与运维关键技术[J]. 发电技术, 2022, 43(2): 175-185.
Fang FANG, Dongyang LIANG, Yajuan LIU, Yang HU, Jizhen LIU. Key Technologies for Intelligent Control and Operation and Maintenance of Offshore Wind Power[J]. Power Generation Technology, 2022, 43(2): 175-185.
整机厂商及型号 | 类型 | 容量/MW | 风轮 直径/m | 传动 方式 | 发布年份 |
---|---|---|---|---|---|
明阳MySE16 | 固定式 | 16 | 242 | 半直驱 | 2021 |
海装H256-16 | 固定式 | 16 | 256 | 半直驱 | 2021 |
运达WD24X | 固定式 | 15 | 24X | 双馈 | 2021 |
Vestas V236-15 | 固定式 | 15 | 236 | 直驱 | 2021 |
Siemens SG14 | 固定式 | 14 | 236 | 直驱 | 2021 |
GH Haliade-X | 固定式 | 12~14 | 220 | 直驱 | 2020 |
东气D13000-211 | 固定式 | 10~13 | 211 | 直驱 | 2021 |
金风GWH242-12 | 固定式 | 12 | 242 | 直驱 | 2021 |
上气EW11.0 | 固定式 | 11 | 208 | 直驱 | 2021 |
远景EN-190 | 固定式 | 8 | 190 | 双馈 | 2021 |
明阳MySE.5.5 | 漂浮式 | 5.5 | 155 | 半直驱 | 2021 |
明阳MySE11-16 | 漂浮式 | 11~16 | 203~242 | 半直驱 | 2021 |
表1 国内外整机厂商最新发布的大容量海上风电机组
Tab. 1 The latest large megawatt offshore wind turbines released by domestic and foreign original equipment manufacturers
整机厂商及型号 | 类型 | 容量/MW | 风轮 直径/m | 传动 方式 | 发布年份 |
---|---|---|---|---|---|
明阳MySE16 | 固定式 | 16 | 242 | 半直驱 | 2021 |
海装H256-16 | 固定式 | 16 | 256 | 半直驱 | 2021 |
运达WD24X | 固定式 | 15 | 24X | 双馈 | 2021 |
Vestas V236-15 | 固定式 | 15 | 236 | 直驱 | 2021 |
Siemens SG14 | 固定式 | 14 | 236 | 直驱 | 2021 |
GH Haliade-X | 固定式 | 12~14 | 220 | 直驱 | 2020 |
东气D13000-211 | 固定式 | 10~13 | 211 | 直驱 | 2021 |
金风GWH242-12 | 固定式 | 12 | 242 | 直驱 | 2021 |
上气EW11.0 | 固定式 | 11 | 208 | 直驱 | 2021 |
远景EN-190 | 固定式 | 8 | 190 | 双馈 | 2021 |
明阳MySE.5.5 | 漂浮式 | 5.5 | 155 | 半直驱 | 2021 |
明阳MySE11-16 | 漂浮式 | 11~16 | 203~242 | 半直驱 | 2021 |
图4 基于风-浪-流预测的海上风电机组功率-载荷-运动多目标控制技术架构
Fig. 4 Power-load-motion multi-objective control technology architecture based on wind-wave-current prediction for offshore wind turbines
1 | 刘吉臻,马利飞,王庆华,等 .海上风电支撑我国能源转型发展的思考[J].中国工程科学,2021,23(1):149-159. doi:10.15302/J-SSCAE-2021.01.021 |
LIU J Z, MA L F, WANG Q H,et al .Offshore wind power supports China’s energy transition[J].Strategic Study of CAE,2021,23(1): 149-159. doi:10.15302/J-SSCAE-2021.01.021 | |
2 | 南通日报 .如东建成亚洲最大“绿色能源宝库”[EB/OL].(2021-12-18)[2022-02-18].. |
Daily Nantong .Asia’s largest “green energy treasure trove” was built in Rudong[EB/OL].(2021-12-18)[2022-02-18].. | |
3 | 央视网 .我国首个百万千瓦级海上风电场并网发电 创下了多个“全国之最”[EB/OL].(2021-12-25)[2022-02-18].. doi:10.1109/oses.2019.8867350 |
CCTV.com.China’s first million-kilowatt offshore wind farm is connected to the grid,and setting a number of “the best in China”[EB/OL].(2021-12-25)[2022-02-18].. doi:10.1109/oses.2019.8867350 | |
4 | 国家能源局 .国家能源局2022年一季度网上新闻发布会文字实录[EB/OL].(2022-01-28)[2022-02-18].. doi:10.53772/nmo.2022 |
National Energy Administration .Transcript of the online press conference of the National Energy Administration for the first quarter of 2022[EB/OL].(2022-01-28)[2022-02-18].. doi:10.53772/nmo.2022 | |
5 | 郑黎明,贾科,毕天姝,等 .海上风电接入柔直系统交流侧故障特征及对保护的影响分析[J].电力系统保护与控制,2021,49(20):20-32. |
ZHENG L M, JIA K, BI T S,et al .AC-side fault analysis of a VSC-HVDC transmission system connected to offshore wind farms and the impact on protection[J].Power System Protection and Control,2021,49(20):20-32. | |
6 | 杨大业,项祖涛,罗煦之,等 .永磁型风机海上风电送出系统甩负荷故障暂时过电压影响因素分析[J].发电技术,2022,43(1):111-118. doi:10.12096/j.2096-4528.pgt.20033 |
YANG D Y, XIANG Z T, LUO X Z,et al .Analysis on influence factors of temporary overvoltage of load rejection fault of offshore wind power transmission system of permanent magnet synchronous generator[J].Power Generation Technology,2022,43(1):111-118. doi:10.12096/j.2096-4528.pgt.20033 | |
7 | 余浩,肖彭瑶,林勇,等 .大规模海上风电高电压穿越研究进展与展望[J].智慧电力,2020,48(3):30-38. doi:10.3969/j.issn.1673-7598.2020.03.005 |
YU H, XIAO P Y, LIN Y,et al .Review on high voltage ride-through strategies for offshore doubly-fed wind farms[J].Smart Power,2020,48(3):30-38. doi:10.3969/j.issn.1673-7598.2020.03.005 | |
8 | 付艳,周晓风,戴国安,等 .海上风电直流耗能装置和保护配合策略研究[J] .电力系统保护与控制,2021,49(15):178-186. |
FU Y, ZHOU X F, DAI G A,et al .Research on coordination strategy for an offshore wind power DC chopper device and protection[J].Power System Protection and Control,2021,49(15):178-186. | |
9 | SHAH K A, MENG F T, LI Y,et al .A synthesis of feasible control methods for floating offshore wind turbine system dynamics[J].Renewable and Sustainable Energy Reviews,2021,151(1):111525. doi:10.1016/j.rser.2021.111525 |
10 | JONKMAN J M, BUTTERFIELD S, MUSIAL W,et al .Definition of a 5-MW reference wind turbine for offshore systems development[R].Golden,Colorado,USA:National Renewable Energy Laboratory,2009. |
11 | BAK C, ZAHLE F, BITSCHE R,et al .Description of the DTU 10 MW reference wind turbine[R].Technical University of Denmark:DTU Wind Energy,2013. |
12 | GAERTNER E, RINKER J, SETHURAMAN L,et al .IEA wind TCP task 37:definition of the IEA 15-megawattoffshore reference wind turbine[R].Golden,Colorado,USA:National Renewable Energy Laboratory,2020. doi:10.2172/1603478 |
13 | 姚钢,杨浩猛,周荔丹,等 .大容量海上风电机组发展现状及关键技术[J].电力系统自动化,2021,45(21):33-47. doi:10.7500/AEPS20210416003 |
YAO G, YANG H M, ZHOU L D,et al .Development status and key technologies of large-capacity offshore wind turbines[J].Automation of Electric Power Systems,2021,45(21):33-47. doi:10.7500/AEPS20210416003 | |
14 | 广东省人民政府办公厅 .广东省人民政府办公厅关于印发广东省海洋经济发展“十四五”规划的通知[EB/OL].(2021-12-14)[2022-02-18].. doi:10.37544/0005-6650-2021-01-02-12 |
General Office of Guangdong Provincial Government .Notice on printing and distributing the “14th Five-Year Plan” for marine economic development of Guangdong province[EB/OL].(2021-12-14)[2022-02-18].. doi:10.37544/0005-6650-2021-01-02-12 | |
15 | 中国海装 .央视聚焦:国内首款深远海浮式风电机组逐鹿深远海[EB/OL].(2022-01-13)[2022-02-18].. doi:10.1007/978-3-030-87982-2_2 |
CSSC .CCTV Focus: The first deep sea floating wind turbine in China competes with deep sea[EB/OL].(2022-01-13)[2022-02-18].. doi:10.1007/978-3-030-87982-2_2 | |
16 | PASSOM P, KÜHN M, BUTTERFIELD S,et al .OC3-Benchmark exercise of aero-elastic offshore wind turbine codes[J].Journal of Physics Conference,2007,75(1):012071. doi:10.1088/1742-6596/75/1/012071 |
17 | ROBERTSON A N, JONKMAN J, MASCIOLA M, SONG H,et al .Definition of the semisubmersible floating system for phase II of OC4[R].Golden,Colorado,USA:National Renewable Energy Laboratory,2014. |
18 | ROBERTSON A N, WENDT F, JONKMAN J M,et al .OC5 project phase II:validation of global loads of the deep wind floating semisubmersible wind turbine[J].Energy Procedia,2017,137:38-57. doi:10.1016/j.egypro.2017.10.333 |
19 | BERGUA R, ROBERTSON A, JONKMAN J,et al .OC6 Phase II:integration and verification of a new soil-structure interaction model for offshore wind design[EB/OL].(2022-01-13)[2022-02-18]. . doi:10.2172/1811648 |
20 | 许移庆,张友林 .漂浮式海上风电发展概述[J].风能,2020(5):56-61. doi:10.3969/j.issn.1674-9219.2020.05.019 |
XU Y Q, ZHANG Y L .Overview of floating offshore wind power development[J].Wind Energy,2020(5):56-61. doi:10.3969/j.issn.1674-9219.2020.05.019 | |
21 | 科技日报 .全球首台抗台风型漂浮式海上风电机组建成[EB/OL].(2021-07-28)[2022-02-18].. doi:10.3390/jmse9050543 |
Science and Technology Daily .The first typhoon-resistant floating offshore wind turbine in the world has been built[EB/OL].(2021-07-28)[2022-02-18].. doi:10.3390/jmse9050543 | |
22 | 中国海装 .“扶摇”直上!中国海装牵头研制国内首台深远海浮式风机获重大进展[EB/OL].(2021-12-13)[2022-02-18].. doi:10.14711/thesis-b1749869 |
CSSC .The “Fuyao” straight up! CSSC led the development of the first deep-sea floating wind turbine in China and made significant progress[EB/OL].(2021-12-13)[2022-02-18].. doi:10.14711/thesis-b1749869 | |
23 | ZHAO X G, REN L Z .Focus on the development of offshore wind power in China:has the golden period come?[J].Renewable Energy,2015,81:644-657. doi:10.1016/j.renene.2015.03.077 |
24 | NESHAT M, NEZHAD M M, ABBASNEJAD E,et al .A deep learning-based evolutionary model for short-term wind speed forecasting:a case study of the Lillgrund offshore wind farm[J].Energy Conversion and Management,2021,236:114002. doi:10.1016/j.enconman.2021.114002 |
25 | MOGHADAM F K, REBOUÇAS G F S, NEJAD A R .Digital twin modeling for predictive maintenance of gearboxes in floating offshore wind turbine drivetrains[J].Forschung im Ingenieurwesen,2021,85(2):273-286. doi:10.1007/s10010-021-00468-9 |
26 | 中央广播电视总台 .伽利略超感知风机:最聪明的风机[EB/OL].(2021-06-25)[2022-02-18].. doi:10.1002/we.2681 |
China Media Group (CMG) .Galileo super sense wind turbine:the smartest wind turbine[EB/OL].(2021-06-25)[2022-02-18].. doi:10.1002/we.2681 | |
27 | 每日风电 .海陆新品 2+2,数字智联强赋能,电气风电助力零碳时代[EB/OL].(2021-10-19)[2022-02-18].. |
Daily Wind Power .Sea and land new products 2+2, digital wisdom strong empowerment, electrical wind power to help zero carbon era[EB/OL].(2021-10-19)[2022-02-18].. | |
28 | 每日风电 .推进装备数字化智能化转型,中国海装PLM系统重磅上线[EB/OL].(2022-01-04)[2022-02-18].. doi:10.4236/oalib.1108375 |
Daily Wind Power .Promoting digital and intelligent transformation of equipment,PLM system of CSSC is relaunched[EB/OL].(2022-01-04)[2022-02-18].. doi:10.4236/oalib.1108375 | |
29 | JONKMAN J M .Influence of control on the pitch damping of a floating wind turbine[C]//46th AIAA Aerospace Sciences Meeting and Exhibit,Reno,Nevada,USA:AIAA,2008:125-136. doi:10.2514/6.2008-1306 |
30 | HASAGER C B, RASMUSSEN L, PEÑA A,et al .Wind farm wake:the horns rev photo case[J].Energies,2013,6(2):696-716. doi:10.3390/en6020696 |
31 | 申新贺,叶杭冶,潘东浩,等 .风力发电机组的台风适应性设计方法研究[J].中国工程科学,2014,16(3):70-75. doi:10.3969/j.issn.1009-1742.2014.03.010 |
SHEN X H, YE H Y, PAN D H,et al .Adaptive design method of wind turbine to Typhoon conditions[J].Strategic Study of CAE.2014,16(3):70-75. doi:10.3969/j.issn.1009-1742.2014.03.010 | |
32 | 王浩,柯世堂,王同光 .台风过境全过程大型风力机风荷载特性[J].空气动力学学报,2020,38(5):915-923. doi:10.7638/kqdlxxb-2019.0108 |
WANG H, KE S T, WANG T G .Wind loads characteristic of large wind turbine considering typhoon transit process[J].Acta Aerodynamica Sinica,2020,38(5):915-923. doi:10.7638/kqdlxxb-2019.0108 | |
33 | 吴金城,张容焱,张秀芝 .海上风电机的抗台风设计[J].中国工程科学,2010,12(11):25-31. doi:10.3969/j.issn.1009-1742.2010.11.005 |
WU J C, ZHANG R Y, ZHANG X Z .Anti-typhoon design for offshore wind turbines[J].Strategic Study of CAE,2010,12(11):25-31. doi:10.3969/j.issn.1009-1742.2010.11.005 | |
34 | LUO Y S, CHEN Q, REN D Y,et al .The light-weight design of tower for under typhoon wind turbine based on the typhoon control strategy[C]//Proceedings of the International Conference on Sensors,Mechatronics and Automation.Zhuhai,China:IEEE,2016:12-13. doi:10.2991/icsma-16.2016.70 |
35 | 张雪伟 .测风激光雷达:降低风电成本的有力武器[J].风能,2018(10):34-35. |
ZANG X W .Wind measurement lidar:a powerful weapon to reduce the cost of wind power[J].Wind Energy,2018(10):34-35. | |
36 | LIU X L, LIN Z, FENG Z M .Short-term offshore wind speed forecast by seasonal ARIMA-A comparison against GRU and LSTM[J].Energy,2021,227:120492. doi:10.1016/j.energy.2021.120492 |
37 | WU M N, STEFANAKOS C, GAO Z,et al .Prediction of short-term wind and wave conditions for marine operations using a multi-step-ahead decomposition-ANFIS model and quantification of its uncertainty[J].Ocean Engineering,2019,188:106300. doi:10.1016/j.oceaneng.2019.106300 |
38 | SARKAR S, FITZGERALD B, BASU B .Individual blade pitch control of floating offshore wind turbines for load mitigation and power regulation[J].IEEE Transactions on Control Systems Technology,2020,29(1):305-315. doi:10.1109/tcst.2020.2975148 |
39 | EBADOLLAHI S, SAKI S .Wind turbine torque oscillation reduction using soft switching multiple model predictive control based on the gap metric and Kalman filter estimator[J].IEEE Transactions on Industrial Electronics,2017,65(5):3890-3898. doi:10.1109/tie.2017.2760841 |
40 | ABDELBAKY M A, LIU X J, JIANG D .Design and implementation of partial offline fuzzy model-predictive pitch controller for large-scale wind-turbines[J].Renewable Energy,2020,145: 981-996. doi:10.1016/j.renene.2019.05.074 |
41 | INTHAMOUSSOU F A, DE BATTISTA H, MANTZ R J .LPV-based active power control of wind turbines covering the complete wind speed range[J].Renewable Energy,2016,99:996-1007. doi:10.1016/j.renene.2016.07.064 |
42 | HAN C L, NAGAMUNE R .Platform position control of floating wind turbines using aerodynamic force[J].Renewable Energy,2020,151:896-907. doi:10.1016/j.renene.2019.11.079 |
43 | SHAH K A, LI Y, NAGAMUNE R,et al .Platform motion minimization using model predictive control of a floating offshore wind turbine[J].Theoretical and Applied Mechanics Letters,2021,11(5):100295. doi:10.1016/j.taml.2021.100295 |
44 | STEWART G, LACKNER M .Offshore wind turbine load reduction employing optimal passive tuned mass damping systems[J].IEEE Transactions on Control Systems Technology,2013,21(4):1090-1104. doi:10.1109/tcst.2013.2260825 |
45 | LI X W, GAO H J .Load mitigation for a floating wind turbine via generalized H∞ structural control[J].IEEE Transactions on Industrial Electronics,2015,63(1): 332-342. doi:10.1109/tie.2015.2465894 |
46 | BOERSMA S, GEBRAAD P M O, VALI M,et al .A control-oriented dynamic wind farm flow model:“WFSim”[J].Journal of Physics Conference,2016,753(3):032005. doi:10.1088/1742-6596/753/3/032005 |
47 | GEBRAAD P M O, TEEUWISSE F W, WINGERDEN J W VAN,et al .Wind plant power optimization through yaw control using a parametric model for wake effects:a CFD simulation study[J].Wind Energy,2016,19(1):95-114. doi:10.1002/we.1822 |
48 | FREDERIK J A .Dynamic wind farm control using the WFSim flow model[D].Delft:Delft University of Technology,2017. |
49 | YIN X X, ZHAO X W .Data driven learning model predictive control of offshore wind farms[J].International Journal of Electrical Power & Energy Systems,2021,127:106639. doi:10.1016/j.ijepes.2020.106639 |
50 | REN Z R, VERMA A S, LI Y,et al .Offshore wind turbine operations and maintenance:A state-of-the-art review[J].Renewable and Sustainable Energy Reviews,2021,144:110886. doi:10.1016/j.rser.2021.110886 |
51 | 黄玲玲,曹家麟,张开华,等 .海上风电机组运行维护现状研究与展望[J].中国电机工程学报,2016,36(3):729-738. |
HUANG L L, CAO J L, ZHANG K H,et al .Status and prospects on operation and maintenance of offshore wind turbines[J].Proceedings of the CSEE,2016,36(3):729-738. | |
52 | 房方,姚贵山,胡阳,等 .风力发电机组数字孪生系统[J/OL].中国科学:技术科学:1-13[2022-02-18].. |
FANG F, YAO G S, HU Y,et al .Digital twin system of a wind turbine[J].Science China:Scientia Sinicia Technologica: 1-13[2022-02-18].. | |
53 | 房方,张效宁,梁栋炀,等 .面向智能发电的数字孪生技术及其应用模式[J].发电技术,2020,41(5):462-470. doi:10.12096/j.2096-4528.pgt.20075 |
FANG F, ZHANG X N, LIANG D Y,et al .Digital twin technology for smart power generation and its application modes[J].Power Generation Technology,2020,41(5):462-470. doi:10.12096/j.2096-4528.pgt.20075 | |
54 | 张洪流,商明星,刘正亮,等 .海上风电运维关键装备与技术[J].船舶工程,2021,43(S1):6-8. |
ZHANG H L, SHANG M X, LIU Z L,et al .Key equipment and technology for offshore wind power maintenance[J].Ship Engineering,2021,43(S1):6-8. | |
55 | LIU Y, HAJJ M, BAO Y. Review of robot-based damage assessment for offshore wind turbines[J].Renewable and Sustainable Energy Reviews,2022,158:112187. doi:10.1016/j.rser.2022.112187 |
56 | SHAFIEE M, ZHOU Z Y, MEI L Y,et al .Unmanned aerial drones for inspection of offshore wind turbines: a mission-critical failure analysis[J].Robotics,2021,10(1):26. doi:10.3390/robotics10010026 |
57 | 张晗,李存义,曹淑刚,等 .无人机在海上风电机组叶片巡检中的应用[J].能源科技,2020,18(5):67-70. |
ZHANG H, LI C Y, CAO S G,et al .Application of UAV in 0ffshore wind turbine blade inspection[J].Energy Technology,2020,18(5):67-70. |
[1] | 樊昂, 李录平, 刘瑞, 欧阳敏南, 陈尚年. 不同风速对单桩式海上风电机组塔筒动态特性的影响[J]. 发电技术, 2024, 45(2): 312-322. |
[2] | 严新荣, 张宁宁, 马奎超, 魏超, 杨帅, 潘彬彬. 我国海上风电发展现状与趋势综述[J]. 发电技术, 2024, 45(1): 1-12. |
[3] | 许帅, 杨羽霏, 刚傲, 谢越韬, 张晓明, 刘功鹏. 中欧漂浮式海上风电关键技术与产业链合作路径研究[J]. 发电技术, 2024, 45(1): 13-23. |
[4] | 刘洪波, 刘珅诚, 盖雪扬, 刘永发, 阎禹同. 高比例新能源接入的主动配电网规划综述[J]. 发电技术, 2024, 45(1): 151-161. |
[5] | 陈皓勇, 黄宇翔, 张扬, 王斐, 周亮, 汤君博, 吴晓彬. 基于“三流分离-汇聚”的虚拟电厂架构设计[J]. 发电技术, 2023, 44(5): 616-624. |
[6] | 郁海彬, 张煜晨, 刘扬洋, 陆增洁, 翁锦德. 碳交易机制下多主体虚拟电厂参与电力市场的优化调度竞标策略[J]. 发电技术, 2023, 44(5): 634-644. |
[7] | 孙财新, 张波, 唐巍, 周昳鸣, 付明志, 秦猛, 郭小江. 海上风电机组国产化研究与实践[J]. 发电技术, 2023, 44(5): 696-702. |
[8] | 贾文虎, 徐群杰. 海上风电设施防腐蚀技术研究进展[J]. 发电技术, 2023, 44(5): 703-711. |
[9] | 李建林, 邵晨曦, 张则栋, 梁忠豪, 曾飞. 氢能产业政策及商业化模式分析[J]. 发电技术, 2023, 44(3): 287-295. |
[10] | 杨锡勇, 张仰飞, 林纲, 张玉卓, 安允展, 杨昊天. 考虑需求响应的源-荷-储多时间尺度协同优化调度策略[J]. 发电技术, 2023, 44(2): 253-260. |
[11] | 肖洋, 李志强, 程林, 汤磊, 夏潮, 梁英, 宋锐, 王东阳, 李贺文. 西北电网集中式调相机AVC综合协调控制策略[J]. 发电技术, 2023, 44(2): 270-279. |
[12] | 印欣, 张锋, 阿地利·巴拉提, 常喜强, 陈武晖, 李长军, 李雪明, 袁少伟. 新型电力系统背景下电热负荷参与实时调度研究[J]. 发电技术, 2023, 44(1): 115-124. |
[13] | 董光德, 李道明, 陈咏涛, 马兴, 付昂, 穆钢, 肖白. 基于粒子群优化与卷积神经网络的电能质量扰动分类方法[J]. 发电技术, 2023, 44(1): 136-142. |
[14] | 周昳鸣, 闫姝, 刘鑫, 张波, 郭雨桐, 郭小江. 中国海上风电支撑结构一体化设计综述[J]. 发电技术, 2023, 44(1): 36-43. |
[15] | 吴荣辉, 刘冬, 郁冶, 牟凯龙, 赵兰浩. 基于浸入边界法的海上风电双向流固耦合数值模拟方法[J]. 发电技术, 2023, 44(1): 44-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||