发电技术 ›› 2025, Vol. 46 ›› Issue (6): 1164-1175.DOI: 10.12096/j.2096-4528.pgt.24059
• 储能 • 上一篇
张静姝, 刘倩, 姚晓乐, 徐超, 巨星
收稿日期:2024-04-07
修回日期:2024-05-09
出版日期:2025-12-31
发布日期:2025-12-25
通讯作者:
巨星
作者简介:基金资助:Jingshu ZHANG, Qian LIU, Xiaole YAO, Chao XU, Xing JU
Received:2024-04-07
Revised:2024-05-09
Published:2025-12-31
Online:2025-12-25
Contact:
Xing JU
Supported by:摘要:
目的 在高功率与高能量密度电池的发展需求下,热安全成为制约锂离子电池(lithium-ion batteries,LIB)大规模应用的关键,高效热安全防护技术成为发展的必然。为此,制备了一种高潜热、高热导率、具有双段控温功能的水合盐复合相变材料(composite phase change material,CPCM),用于LIB热管理和热安全防护。 方法 通过扫描电子显微镜测试、差示扫描量热分析和热常数分析的表征测试,确定CPCM热物性及储热过程,进而结合热性能测试,研究其控温效果并筛选出最佳配比的CPCM。 结果 掺入膨胀石墨质量分数为10%的CPCM具有183.7 J/g的潜热和3.926 W/(m⋅K)的热导率,其相变潜热可在LIB高倍率放电条件下吸收热量并快速传至外界,相变平台持续20~40 min;其热化学储热可在LIB热失控状态下将电池表面达到130 ℃的时间由50 s延长至180 s,延缓热失控特征温度的触发与蔓延。 结论 该CPCM可同时在20~40 ℃的热管理区间及100 ℃以上的热失控区间吸热,起到高效的双段控温作用。研究结果可为电池热管理系统发展提供新思路。
中图分类号:
张静姝, 刘倩, 姚晓乐, 徐超, 巨星. 应用于锂离子电池无源热管理与安全防护的水合盐复合相变材料[J]. 发电技术, 2025, 46(6): 1164-1175.
Jingshu ZHANG, Qian LIU, Xiaole YAO, Chao XU, Xing JU. Hydrated Salt Composite Phase Change Materials for Passive Thermal Management and Safety Protection of Lithium-Ion Batteries[J]. Power Generation Technology, 2025, 46(6): 1164-1175.
| 药品名称 | 简称 | 相变温度/℃ | 相变潜热/(kJ/kg) | 外观 | 作用 |
|---|---|---|---|---|---|
| 十水硫酸钠 | SSD | 32.4 | 250.8[ | 白色晶体 | 相变材料 |
| 十二水磷酸氢二钠 | DHPD | 35.0 | 256.6[ | 白色结晶粉末 | 相变材料 |
| 羧甲基纤维素钠 | CMC | — | — | 白色纤维状粉末 | 增稠剂 |
| 膨胀石墨 | EG | — | — | 蠕虫状 | 多孔介质 |
表1 实验药品清单
Tab. 1 List of experimental chemicals
| 药品名称 | 简称 | 相变温度/℃ | 相变潜热/(kJ/kg) | 外观 | 作用 |
|---|---|---|---|---|---|
| 十水硫酸钠 | SSD | 32.4 | 250.8[ | 白色晶体 | 相变材料 |
| 十二水磷酸氢二钠 | DHPD | 35.0 | 256.6[ | 白色结晶粉末 | 相变材料 |
| 羧甲基纤维素钠 | CMC | — | — | 白色纤维状粉末 | 增稠剂 |
| 膨胀石墨 | EG | — | — | 蠕虫状 | 多孔介质 |
| 输出功率/W | 电压/V | 电流/A |
|---|---|---|
| 3 | 23.5 | 0.15 |
| 100 | 131 | 0.8 |
表2 直流电源输出功率、电压、电流
Tab. 2 Output power, voltage, and current of DC power supply
| 输出功率/W | 电压/V | 电流/A |
|---|---|---|
| 3 | 23.5 | 0.15 |
| 100 | 131 | 0.8 |
| 参数 | CPCM-5%EG | CPCM-10%EG | CPCM-15%EG |
|---|---|---|---|
| 熔点/℃ | 27.66 | 29.05 | 32.62 |
| 相变焓/(J/g) | 184.5 | 183.7 | 172.2 |
表3 不同EG含量的CPCM的熔化温度和相变焓
Tab. 3 Melting temperature and phase transformation enthalpy of CPCM with different EG contents
| 参数 | CPCM-5%EG | CPCM-10%EG | CPCM-15%EG |
|---|---|---|---|
| 熔点/℃ | 27.66 | 29.05 | 32.62 |
| 相变焓/(J/g) | 184.5 | 183.7 | 172.2 |
| 类型 | 石蜡 | CPCM-5%EG | CPCM-10%EG | CPCM-15%EG |
|---|---|---|---|---|
| 相变平台 | 160 | 150 | 125 | 100 |
| 脱水平台 | — | 350 | 260 | 250 |
表4 不同材料的相变平台与脱水平台持续时间 (s)
Tab. 4 Duration of phase change platform and dehydration platform for different materials
| 类型 | 石蜡 | CPCM-5%EG | CPCM-10%EG | CPCM-15%EG |
|---|---|---|---|---|
| 相变平台 | 160 | 150 | 125 | 100 |
| 脱水平台 | — | 350 | 260 | 250 |
| [1] | 张闯,高浪涛,刘素贞,等 .基于超声的锂离子电池微过充循环老化特性[J].电工技术学报,2024,39(24):7965-7978. |
| ZHANG C, GAO L T, LIU S Z,et al .Characterization of slight overcharge cycle aging of lithium-ion batteries based on ultrasonic[J].Transactions of China Electrotechnical Society,2024,39(24):7965-7978. | |
| [2] | 赵珈卉,田立亭,程林 .锂离子电池状态估计与剩余寿命预测方法综述[J].发电技术,2023,44(1):1-17. |
| ZHAO J H, TIAN L T, CHENG L .Review on state estimation and remaining useful life prediction methods for lithium-ion battery[J].Power Generation Technology,2023,44(1):1-17. | |
| [3] | LYU P, LIU X, QU J, al et,Recent advances of thermal safety of lithium ion battery for energy storage[J].Energy Storage Materials,2020,31:195-220. doi:10.1016/j.ensm.2020.06.042 |
| [4] | VÄYRYNEN A, SALMINEN J .Lithium ion battery production[J].The Journal of Chemical Thermodynamics,2012,46:80-85. doi:10.1016/j.jct.2011.09.005 |
| [5] | CHEN K, CHEN Y, LI Z,et al .Design of the cell spacings of battery pack in parallel air-cooled battery thermal management system[J].International Journal of Heat and Mass Transfer,2018,127:393-401. doi:10.1016/j.ijheatmasstransfer.2018.06.131 |
| [6] | ZHAO Y, ZHANG X, YANG B, al et,A review of battery thermal management systems using liquid cooling and PCM[J].Journal of Energy Storage,2024,76:109836. doi:10.1016/j.est.2023.109836 |
| [7] | 杨梦洁,杨爱军,叶奕君,等 .基于气体分析的锂离子电池热失控早期预警研究进展[J].电工技术学报,2023,38(17):4507-4538. |
| YANG M J, YANG A J, YE Y J,et al .Research progress on early warning of thermal runaway of Li-ion batteries based on gas analysis[J].Transactions of China Electrotechnical Society,2023,38(17):4507-4538. | |
| [8] | CHOMBO P, LAOONUAL Y .A review of safety strategies of a Li-ion battery[J].Journal of Power Sources,2020,478:228649. doi:10.1016/j.jpowsour.2020.228649 |
| [9] | 向铭,何怡刚,张慧 .基于改进集成经验模态分解和高斯过程回归的锂离子电池剩余容量及寿命预测方法[J].电测与仪表,2023,60(9):27-33. |
| XIANG M, HE Y G, ZHANG H .Capacity and remaining useful life prediction of lithium-ion battery based on MEEMD and GPR[J].Electrical Measurement & Instrumentation,2023,60(9):27-33. | |
| [10] | FENG X, REN D, HE X,et al .Mitigating thermal runaway of lithium-ion batteries[J].Joule,2020,4(4):743-770. doi:10.1016/j.joule.2020.02.010 |
| [11] | 张闯,杨浩,刘素贞,等 .基于阻抗在线测量的锂离子电池过放电诱发内短路识别研究[J].电工技术学报,2024,39(6):1656-1670. |
| ZHANG C, YANG H, LIU S Z,et al .Research on overdischarge-induced internal short circuit identification of lithium-ion battery based on impedance online measurement[J].Transactions of China Electrotechnical Society,2024,39(6):1656-1670. | |
| [12] | 徐亮 .电网侧无人值守储能电站智能控制策略研究综述[J].电测与仪表,2023,60(5):11-22. |
| XU L .Review on intelligent control strategy for unattended grid-side energy storage power station[J].Electrical Measurement & Instrumentation,2023,60(5):11-22. | |
| [13] | WANG H, TAO T, XU J,et al .Thermal performance of a liquid-immersed battery thermal management system for lithium-ion pouch batteries[J].Journal of Energy Storage,2022,46:103835. doi:10.1016/j.est.2021.103835 |
| [14] | LIU Q, SUN C, ZHANG J,et al .The electro-thermal equalization behaviors of battery modules with immersion cooling[J].Applied Energy,2023,351:121826. doi:10.1016/j.apenergy.2023.121826 |
| [15] | AL-ZAREER M, DINCER I, ROSEN M A .Development and evaluation of a new ammonia boiling based battery thermal management system[J].Electrochimica Acta,2018,280:340-352. doi:10.1016/j.electacta.2018.05.093 |
| [16] | GALAZUTDINOVA Y, AL-HALLAJ S, GRÁGEDA M,et al .Development of the inorganic composite phase change materials for passive thermal management of Li-ion batteries:material characterization[J].International Journal of Energy Research,2020,44(3):2011-2022. doi:10.1002/er.5054 |
| [17] | CHEN R, GE X, LI X,et al .Facile preparation method of phase change microcapsule with organic-inorganic silicone shell for battery thermal management[J].Composites Science and Technology,2022,228:109662. doi:10.1016/j.compscitech.2022.109662 |
| [18] | HUANG Y H, CHENG W L, ZHAO R .Thermal management of Li-ion battery pack with the application of flexible form-stable composite phase change materials[J].Energy Conversion and Management,2019,182:9-20. doi:10.1016/j.enconman.2018.12.064 |
| [19] | LI X, DENG J, HUANG Q,et al .Experimental investigation on immersion liquid cooled battery thermal management system with phase change epoxy sealant[J].Chemical Engineering Science,2022,264:118089. doi:10.1016/j.ces.2022.118089 |
| [20] | 姜贵文,李敬会,黄菊花,等 .相变材料和液冷耦合散热的锂电池热管理研究[J].电源技术,2018,42(10):1462-1465. doi:10.3969/j.issn.1002-087X.2018.10.012 |
| JIANG G W, LI J H, HUANG J H,et al .Study on thermal management of Li-ion battery with phase change materials and liquid-cooled coupled heat dissipation[J].Chinese Journal of Power Sources,2018,42(10):1462-1465. doi:10.3969/j.issn.1002-087X.2018.10.012 | |
| [21] | SABBAH R, KIZILEL R, SELMAN J R,et al .Active (air-cooled) vs.passive (phase change material) thermal management of high power lithium-ion packs:limitation of temperature rise and uniformity of temperature distribution[J].Journal of Power Sources,2008,182(2):630-638. doi:10.1016/j.jpowsour.2008.03.082 |
| [22] | LI W, JAROMÍR KLEMEŠ J, WANG Q,et al .Efficient thermal management strategy of Li-ion battery pack based on sorption heat storage[J].Energy Conversion and Management,2022,256:115383. doi:10.1016/j.enconman.2022.115383 |
| [23] | PESARAN A A .Battery thermal models for hybrid vehicle simulations[J].Journal of Power Sources,2002,110(2):377-382. doi:10.1016/s0378-7753(02)00200-8 |
| [24] | LIU H, WEI Z, HE W,et al .Thermal issues about Li-ion batteries and recent progress in battery thermal management systems:a review[J].Energy Conversion and Management,2017,150:304-330. doi:10.1016/j.enconman.2017.08.016 |
| [25] | LIN S, LING Z, LI S,et al .Mitigation of lithium-ion battery thermal runaway and inhibition of thermal runaway propagation using inorganic salt hydrate with integrated latent heat and thermochemical storage[J].Energy,2023,266:126481. doi:10.1016/j.energy.2022.126481 |
| [26] | 王泽旭,李冰辰,许瑶,等 .基于过冷相变材料热开关的锂离子电池热管理系统[J].发电技术,2022,43(2):328-340. doi:10.12096/j.2096-4528.pgt.21058 |
| WANG Z X, LI B C, XU Y,et al .Lithium-ion battery thermal management system based on the combination of supercooled phase change material and thermal switch[J].Power Generation Technology,2022,43(2):328-340. doi:10.12096/j.2096-4528.pgt.21058 | |
| [27] | ZHANG W, LIANG Z, YIN X,et al .Avoiding thermal runaway propagation of lithium-ion battery modules by using hybrid phase change material and liquid cooling[J].Applied Thermal Engineering,2021,184:116380. doi:10.1016/j.applthermaleng.2020.116380 |
| [28] | 郭学伯,范良迟,许浈婧,等 .助力节能降碳的相变储热材料研究和应用进展[J].发电技术,2023,44(2):201-212. doi:10.12096/j.2096-4528.pgt.22001 |
| GUO X B, FAN L C, XU Z J,et al .Research and application progress of phase change thermal energy storage materials for energy saving and carbon reduction[J].Power Generation Technology,2023,44(2):201-212. doi:10.12096/j.2096-4528.pgt.22001 | |
| [29] | ZENG Z, ZHAO B, WANG R .Water based adsorption thermal battery:sorption mechanisms and applications[J].Energy Storage Materials,2023,54:794-821. doi:10.1016/j.ensm.2022.11.024 |
| [30] | ROYO P, FERREIRA V J, LÓPEZ-SABIRÓN A M,et al .Hybrid diagnosis to characterise the energy and environmental enhancement of photovoltaic modules using smart materials[J].Energy,2016,101:174-189. doi:10.1016/j.energy.2016.01.101 |
| [31] | 王泽众,黄平瑞,魏高升,等 .太阳能热发电固-气两相化学储热技术研究进展[J].发电技术,2021,42(2):238-246. |
| WANG Z Z, HUANG P R, WEI G S,et al .Research progress of solid-gas two-phase chemical heat storage technology for solar thermal power generation[J].Power Generation Technology,2021,42(2):238-246. | |
| [32] | MIAO Q, ZHANG Y, JIA X,et al .MgSO4-expanded graphite composites for mass and heat transfer enhancement of thermochemical energy storage[J].Solar Energy,2021,220:432-439. doi:10.1016/j.solener.2021.03.008 |
| [33] | LIN N, LI C, ZHANG D,et al .Emerging phase change cold storage materials derived from sodium sulfate decahydrate[J].Energy,2022,245:123294. doi:10.1016/j.energy.2022.123294 |
| [34] | KAZEMI Z, MORTAZAVI S M .A new method of application of hydrated salts on textiles to achieve thermoregulating properties[J].Thermochimica Acta,2014,589:56-62. doi:10.1016/j.tca.2014.05.015 |
| [35] | LI W, JAROMÍR KLEMEŠ J, WANG Q,et al .Efficient thermal management strategy of Li-ion battery pack based on sorption heat storage[J].Energy Conversion and Management,2022,256:115383. doi:10.1016/j.enconman.2022.115383 |
| [36] | 张志同,王瑾,柳建华,等 .Na2SO4·10H2O相变蓄冷材料的研究进展[J].建筑节能,2016,44(8):55-59. doi:10.3969/j.issn.1673-7237.2016.08.015 |
| ZHANG Z T, WANG J, LIU J H,et al .Research progress of Na2SO4·10H2O phase change cooling storage materials[J].Building Energy Efficiency,2016,44(8):55-59. doi:10.3969/j.issn.1673-7237.2016.08.015 | |
| [37] | 胡起柱,皮启铎,阮德水,等 .Na2SO4·10H2O-NaCl贮热体系的DSC研究[J].太阳能学报,1985,6(1):35-40. |
| HU Q Z, PI Q D, RUAN D S,et al .DSC study of Na2SO4·10H2O-NaCl thermal energy storage system[J].Acta Energiae Solaris Sinica,1985,6(1):35-40. | |
| [38] | 曾最,罗凯,叶伟梁,等 .十二水磷酸氢二钠相变储能材料研究进展[J].化工进展,2022,41(2):827-836. doi:10.16085/j.issn.1000-6613.2021-0607 |
| ZENG Z, LUO K, YE W L,et al .Research progress of disodium hydrogen phosphate dodecahydrate phase change material[J].Chemical Industry and Engineering Progress,2022,41(2):827-836. doi:10.16085/j.issn.1000-6613.2021-0607 | |
| [39] | 徐玲玲,沈艳华,梁斌斌,等 .Na2SO4·10H2O和Na2HPO4·12H2O体系的相变特性[J].南京工业大学学报(自然科学版),2005,27(4):27-31. doi:10.3969/j.issn.1671-7627.2005.04.006 |
| XU L L, SHEN Y H, LIANG B B,et al .Study on phase transfer characteristics of systems Na2SO4·10H2O and Na2HPO4·12H2O[J].Journal of Nanjing University of Technology (Natural Science Edition),2005,27(4):27-31. doi:10.3969/j.issn.1671-7627.2005.04.006 | |
| [40] | 文越华,张公正,王正刚,等 .Na2SO4·10H2O复合相变储冷体系的热力学性质[J].北京理工大学学报,1999,19(6):778-781. doi:10.3969/j.issn.1001-0645.1999.06.027 |
| WEN Y H, ZHANG G Z, WANG Z G,et al .Thermodynamic properties of sodium sulfate-based complex phase-change cool storage system[J].Journal of Beijing Institute of Technology,1999,19(6):778-781. doi:10.3969/j.issn.1001-0645.1999.06.027 | |
| [41] | RYU H W, WOO S W, SHIN B C,et al .Prevention of supercooling and stabilization of inorganic salt hydrates as latent heat storage materials[J].Solar Energy Materials and Solar Cells,1992,27(2):161-172. doi:10.1016/0927-0248(92)90117-8 |
| [42] | LIU Y, YANG Y .Use of nano-α-Al2O3 to improve binary eutectic hydrated salt as phase change material[J].Solar Energy Materials and Solar Cells,2017,160:18-25. doi:10.1016/j.solmat.2016.09.050 |
| [43] | HIRSCHEY J, GOSWAMI M, AKAMO D O,et al .Effect of expanded graphite on the thermal conductivity of sodium sulfate decahydrate (Na2SO4·10H2O) phase change composites[J].Journal of Energy Storage,2022,52:104949. doi:10.1016/j.est.2022.104949 |
| [44] | LING Z, LI S, CAI C,et al .Battery thermal management based on multiscale encapsulated inorganic phase change material of high stability[J].Applied Thermal Engineering,2021,193:117002. doi:10.1016/j.applthermaleng.2021.117002 |
| [45] | 李穗敏 .基于水合盐相变-热化学蓄热的电池热管理-热失控防护性能研究[D].广州:华南理工大学,2020. |
| LI S M .Application of phase change and thermochemical heat storage of a salt hydrate for battery thermal management and thermal runaway prevention[D].Guangzhou:South China University of Technology,2020. | |
| [46] | 刘倩 .基于棋盘拓扑歧管分流的单相浸没锂离子电池热管理研究[D].北京:华北电力大学,2022. doi:10.1007/978-981-19-0844-6_5 |
| LIU Q .A novel immersion liquid cooling technology with A checkerboard manifold structure for lithium-ion battery thermal management[D].Beijing:North China Electric Power University,2022. doi:10.1007/978-981-19-0844-6_5 | |
| [47] | ZHU Z, LIU Y, ZHANG Z,et al .Studying carbon fiber composite phase change materials:preparation method,thermal storage analysis and application of battery thermal management[J].Journal of Energy Storage,2023,67:107586. doi:10.1016/j.est.2023.107586 |
| [48] | CAO J, LING Z, LIN S,et al .Thermochemical heat storage system for preventing battery thermal runaway propagation using sodium acetate trihydrate/expanded graphite[J].Chemical Engineering Journal,2023,67:107586. doi:10.1016/j.cej.2021.133536 |
| [1] | 罗斌, 白小龙, 臧天磊, 黄燕, 张琳, 李萌, 张雪霞, 蒋永龙. 风光水互补发电系统研究综述[J]. 发电技术, 2025, 46(6): 1097-1111. |
| [2] | 陈锋, 路小敏, 沈冰, 王军鹏. 基于消纳-保供博弈的分布式储能双层规划模型[J]. 发电技术, 2025, 46(6): 1133-1143. |
| [3] | 张萍, 李永强, 杏华良. 基于变分模态分解的平抑风电波动混合储能容量优化配置[J]. 发电技术, 2025, 46(6): 1144-1153. |
| [4] | 张效伟, 衣振晓, 王凯. 基于改进自适应蜜獾算法优化时间卷积网络的车载锂离子电池健康状态估计[J]. 发电技术, 2025, 46(6): 1154-1163. |
| [5] | 李建林, 彭禹宸, 王茜, 姜晓霞, 王垒. 锂离子电池建模研究现状与展望[J]. 发电技术, 2025, 46(5): 857-871. |
| [6] | 邹博, 任建地, 许道明, 邓立生, 廖力达, 肖俊兵. 氯化物熔盐储热技术应用于新能源发电的研究进展[J]. 发电技术, 2025, 46(5): 872-884. |
| [7] | 马宁, 赵攀, 刘艾杰, 许文盼, 王江峰. 纯氢补燃型和天然气补燃型压缩空气储能系统特性与㶲经济性对比[J]. 发电技术, 2025, 46(5): 885-896. |
| [8] | 董福贵, 张伟. 考虑容量价值的独立新型储能电站运行策略优化研究[J]. 发电技术, 2025, 46(5): 897-908. |
| [9] | 马浩然, 袁至, 王维庆, 李骥. 考虑数据中心和储能接入的主动配电网经济调度研究[J]. 发电技术, 2025, 46(4): 748-757. |
| [10] | 王杰, 徐立军, 李笑竹, 樊小朝, 古丽扎提∙海拉提null, 王维庆. 计及灵活性不足风险的配电网智能软开关与多类型共享储能协调优化[J]. 发电技术, 2025, 46(4): 758-767. |
| [11] | 卫广宇, 应笑冬, 姚延军, 杨小芳, 翁楚迪, 彭勇刚, 李海龙. 计及荷电状态的并网型直流微电网功率协同控制策略[J]. 发电技术, 2025, 46(4): 788-796. |
| [12] | 刘佳佳, 巨星. 弃电热储能光伏-光热复合发电系统技术经济性分析[J]. 发电技术, 2025, 46(4): 807-817. |
| [13] | 刘宿城, 栾李, 李龙, 洪涛, 刘晓东. 基于人工智能的直流微电网大信号稳定性评估方法研究[J]. 发电技术, 2025, 46(3): 496-507. |
| [14] | 刘忠, 黄彦铭, 朱光明, 邹淑云. 含风-光-电氢混合储能的多微电网系统容量优化配置方法[J]. 发电技术, 2025, 46(2): 240-251. |
| [15] | 雷基林, 余林兴, 别玉, 徐稚博, 肖雨寒. 孤岛微电网能量管理系统研究综述[J]. 发电技术, 2025, 46(2): 370-385. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||