发电技术 ›› 2025, Vol. 46 ›› Issue (6): 1133-1143.DOI: 10.12096/j.2096-4528.pgt.25195

• 储能 • 上一篇    

基于消纳-保供博弈的分布式储能双层规划模型

陈锋1,2, 路小敏3, 沈冰4, 王军鹏2   

  1. 1.河南科技大学应用工程学院,河南省 三门峡市 472000
    2.三门峡职业技术学院,河南省 三门峡市 472000
    3.郑州浪潮数据技术有限公司,河南省 郑州市 450000
    4.河南省机器人与智能系统重点实验室,河南省 洛阳市 471000
  • 收稿日期:2025-04-29 修回日期:2025-06-06 出版日期:2025-12-31 发布日期:2025-12-25
  • 作者简介:陈锋(1987),男,硕士,副教授,高级工程师,研究方向为高比例新能源新型电力系统优化运行与智能控制,chenfeng@smxpt.edu.cn
    路小敏(1989),女,硕士,工程师,研究方向为大数据与云计算,252991887@qq.com
    沈冰(1977),男,博士,教授,研究方向为新能源、分布式发电和智能微电网建模与控制等,750762185@qq.com
    王军鹏(1979),男,硕士,教授,研究方向为新能源、分布式发电和智能微电网建模与控制等,342717571@qq.com
  • 基金资助:
    国家自然科学基金项目(U2004163);2026年度河南省高等学校重点科研项目计划(26B480004)

Bi-Level Planning Model for Distributed Energy Storage Based on Accommodation-Supply Security Game

Feng CHEN1,2, Xiaomin LU3, Bing SHEN4, Junpeng WANG2   

  1. 1.School of Applied Engineering, Henan University of Science and Technology, Sanmenxia 472000, Henan Province, China
    2.Sanmenxia Polytechnic, Sanmenxia 472000, Henan Province, China
    3.Zhengzhou Inspur Data Technology Co. , Ltd. , Zhengzhou 450000, Henan Province, China
    4.Key Laboratory of Robotics and Intelligent Systems of Henan Province, Luoyang 471000, Henan Province, China
  • Received:2025-04-29 Revised:2025-06-06 Published:2025-12-31 Online:2025-12-25
  • Supported by:
    National Natural Science Foundation of China(U2004163);The Key Scientific Research Project Plan of Colleges and Universities in Henan Province in 2026(26B480004)

摘要:

目的 为解决分布式储能系统在“新能源消纳最大化”与“供电可靠性保障”之间的目标冲突,提出一种兼顾经济性与韧性的协同规划方法。 方法 构建一种动态Stackelberg博弈驱动的双层规划模型,将Stackelberg博弈与鲁棒优化组合,用来解决规划-运行跨层耦合问题;协调规划-运行-市场多方利益,优化储能容量配置与充放电策略,提高供电可靠性;通过双层优化实现规划-运行协同,量化消纳与保供的权衡关系;提出Pareto最优解集,实现最低投资成本、最高新能源消纳率。 结果 通过开发的多指标优化的双层模型快速求解算法,提出了“动态电价-容量补贴”联动机制,有效平衡了规划与运行中的多方利益冲突;将Stackelberg博弈与鲁棒优化组合,解决了规划-运行跨层耦合难题。仿真算例表明,所提出的双层博弈模型在性能上显著优于传统规划方法,验证了动态博弈机制的长期经济性,并揭示了新能源消纳与电力保供之间存在非线性权衡关系。 结论 基于消纳-保供博弈协同的双层规划模型,能够显著提升系统的新能源消纳率与供电可靠性,同时降低储能投资成本及用户用电成本。

关键词: 分布式储能规划, 消纳-保供博弈, 双层优化模型, 新能源消纳, 供电可靠性

Abstract:

Objectives To address the conflicting objectives between “maximizing renewable energy accommodation” and “ensuring power supply reliability” in distributed energy storage systems, a coordinated planning method that balances economic efficiency and resilience is proposed. Methods A dynamic Stackelberg game-driven bi-level planning model is established, integrating Stackelberg game theory with robust optimization to address the cross-level coupling problem between planning and operation. The model coordinates the interests of planning, operation, and market stakeholders to optimize energy storage capacity allocation and charging/discharging strategies, thereby enhancing power supply reliability. Through bi-level optimization, coordination between planning and operation is achieved, and the trade-off between accommodation and supply security is quantified, with Pareto-optimal solutions derived to achieve the lowest investment costs and highest renewable energy accommodation rates. Results A rapid solution algorithm for a bi-level model incorporating multi-objective optimization is developed, and a “dynamic pricing-capacity subsidy” linkage mechanism is proposed. This mechanism effectively balances the conflicting interests among multiple stakeholders in planning and operation. By integrating Stackelberg game theory with robust optimization, the cross-level coupling problem between planning and operation is solved. The simulation cases demonstrate that the proposed bi-level game model significantly outperforms conventional planning methods, validating the long-term economic efficiency of the dynamic game mechanism. Furthermore, a nonlinear trade-off relationship between renewable energy accommodation and power supply security is revealed. Conclusions The bi-level planning model based on accommodation-supply security game coordination can significantly enhance the system’s renewable energy accommodation rate and power supply reliability, while reducing energy storage system investment costs and user electricity costs.

Key words: distributed energy storage planning, accommodation-supply security game, bi-level optimization model, renewable energy accommodation, power supply reliability

中图分类号: