发电技术 ›› 2025, Vol. 46 ›› Issue (6): 1074-1084.DOI: 10.12096/j.2096-4528.pgt.24208

• 分布式能源 • 上一篇    

高背压抽凝热电联供系统建模及快速变负荷控制策略研究

展宗波1, 任吉平1, 丁立平1, 孙兆龙1, 丁衡2, 曹越2   

  1. 1.内蒙古京隆发电有限责任公司,内蒙古自治区 丰镇市 012100
    2.能源热转换及;过程测控教育部重点实验室(东南大学),江苏省 南京市 210096
  • 收稿日期:2024-09-14 修回日期:2024-12-26 出版日期:2025-12-31 发布日期:2025-12-25
  • 通讯作者: 曹越
  • 作者简介:展宗波(1980),男,高级工程师,研究方向为燃煤机组运行优化及数字化技术,dhp129@163.com
    曹越(1989),男,博士,副教授,研究方向为热力系统性能优化、智能控制理论等,本文通信作者,ycao@seu.edu.cn
  • 基金资助:
    国家自然科学基金项目(52206006)

Research on Modeling and Rapid Load Change Control Strategy for High Back- Pressure Extraction-Condensing Combined Heat and Power System

Zongbo ZHAN1, Jiping REN1, Liping DING1, Zhaolong SUN1, Heng DING2, Yue CAO2   

  1. 1.Inner Mongolia Jinglong Power Generation Co. , Ltd. , Fengzhen 012100, Inner Mongolia Autonomous Region, China
    2.Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education (Southeast University), Nanjing 210096, Jiangsu Province, China
  • Received:2024-09-14 Revised:2024-12-26 Published:2025-12-31 Online:2025-12-25
  • Contact: Yue CAO
  • Supported by:
    National Natural Science Foundation of China(52206006)

摘要:

目的 热电联供机组快速变负荷能够保障电网对新能源的消纳能力,对提高火电机组经济效益也具有重要作用。因此,以某电厂高背压抽凝热电联供系统为研究对象,结合其高背压乏汽配合供热抽汽实现热网回水梯级加热的特点,开展了系统建模、动态特性分析及快速变负荷控制策略的研究。 方法 基于APROS仿真平台构建了系统的动态特性模型,通过现场运行数据验证了模型的准确性;研究了变工况下系统热电调节过程的动态响应特性,建立了不同工况下机组热、电负荷与抽汽调节蝶阀;提出了一种耦合供热抽汽调节的机组快速变负荷控制策略,通过调节蝶阀前馈补偿实现机组出力的快速变化,提高了机组的变负荷响应速度。 结果 与热电协调控制相比,快速变负荷策略响应自动发电控制(automatic generation control,AGC)指令的时间缩短150 s,到达稳态所用时间缩短300 s。 结论 双机热电联供系统快速变负荷控制策略能够显著提高系统对AGC指令的响应速度,且过渡过程的震荡更小,到达稳态所用的时间更短。

关键词: 热电联供系统, 新能源消纳, 抽汽阀门控制, 快速变负荷, 协调控制系统, 高背压, 抽汽调节蝶阀

Abstract:

Objectives Rapid load change capability of combined heat and power units can ensure the consumption capacity of the power grid for renewable energy and play an important role in improving the economic efficiency of thermal power units. Therefore, taking a high back-pressure extraction-condensing combined heat and power system in a power plant as the research object, this study focuses on system modeling, dynamic characteristic analysis, and rapid load change control strategy, leveraging the characteristics of its high back-pressure exhaust steam and heating extraction steam to achieve cascade heating of the return water in the heating network. Methods A dynamic characteristic model of the system is established based on the APROS simulation platform, and the accuracy of the model is verified using on-site operation data. The dynamic response characteristics of the thermal and electrical regulation process of the system under varying operating conditions are investigated, and the relationship between the thermal and electrical loads of the unit and the steam extraction valve (EV) under different operating conditions is established. A rapid load change control strategy coupling the heating steam extraction regulation of the unit is proposed. By implementing feedforward compensation at the EV valve, rapid changes of the unit output are realized, improving its load change response speed. Results Compared to coordinated thermal-electrical control, the rapid load change strategy reduces the response time to automatic generation control (AGC) commands by 150 seconds and shortens the time to reach steady state by 300 seconds. Conclusions The rapid load change control strategy for the dual-unit combined heat and power system significantly enhances the response speed of the system to AGC commands, with reduced oscillations during the transition process and a shorter time to reach steady state.

Key words: combined heat and power system, new energy consumption, steam extraction valve control, rapid load change, coordinated control system, high back-pressure, steam extraction regulation butterfly valve

中图分类号: