发电技术 ›› 2025, Vol. 46 ›› Issue (5): 857-871.DOI: 10.12096/j.2096-4528.pgt.24112

• 储能 •    下一篇

锂离子电池建模研究现状与展望

李建林1, 彭禹宸1, 王茜1, 姜晓霞2, 王垒3   

  1. 1.国家能源用户侧储能创新研发中心(北方工业大学),北京市 石景山区 100144
    2.国家电投集团科学技术研究院有限公司,北京市 昌平区 102200
    3.北京海博思创科技股份有限公司,北京市 海淀区 100084
  • 收稿日期:2024-06-24 修回日期:2024-10-02 出版日期:2025-10-31 发布日期:2025-10-23
  • 作者简介:李建林(1976),男,博士,教授,研究方向为大规模储能技术,dkyljl@163.com
    彭禹宸(2001),男,硕士研究生,研究方向为储能电池仿真与建模,2023312080101@mail.ncut.edu.cn
    王茜(1989),女,博士研究生,高级工程师,研究方向为电化学储能电池,wangqian@mail.ncut.edu.cn
    姜晓霞(1980),女,博士,正高级工程师,研究方向为动力工程与工程热物理;
    王垒(1987),男,博士,高级工程师,研究方向为锂离子电池材料。
  • 基金资助:
    国家自然科学基金面上项目(52277211);北方工业大学科研启动基金项目(110051360024XN150-12);北京市科学技术协会“千人进千企”助推计划

Research Status and Prospect of Lithium-Ion Battery Modelling

Jianlin LI1, Yuchen PENG1, Qian WANG1, Xiaoxia JIANG2, Lei WANG3   

  1. 1.National User-Side Energy Storage Innovation Research and Development Center (North China University of Technology), Shijingshan District, Beijing 100144, China
    2.State Power Investment Group Science and Technology Research Institute Co. , Ltd. , Changping District, Beijing 102200, China
    3.Beijing Hyper Strong Science and Technology Co. , Ltd. , Haidian District, Beijing 100084, China
  • Received:2024-06-24 Revised:2024-10-02 Published:2025-10-31 Online:2025-10-23
  • Supported by:
    National Natural Science Foundation of China(52277211);Research Start-up Fund Project of North China University of Technology(110051360024XN150-12);Beijing Association for Science and Technology “Thousands into Thousands of Enterprises” Boost Program

摘要:

目的 锂离子电池模型作为电池管理系统的核心技术之一,对电池性能优化和寿命延长起着至关重要的作用。为了便于在不同场景下选择合适的模型,系统总结了当前锂离子电池不同类型的建模方式,并进行了对比分析。 方法 首先,阐述了锂离子电池的工作原理,强调了精确建模的重要性;然后,根据不同应用场景全面总结了当前广泛采用的锂离子电池模型,并分析讨论了一系列新型机器学习电池模型;最后,探讨了锂离子电池建模技术面临的挑战及未来的研究趋势。 结论 传统电池模型均存在一定局限性,而数据驱动模型在处理复杂系统时往往具有更独特的优势,未来研究需要在模型复杂度和实用性之间找到平衡。研究结果为锂离子电池在储能系统中的应用和未来发展提供了参考。

关键词: 锂离子电池, 储能, 电动汽车, 电池管理系统(BMS), 电池建模, 等效电路模型(ECM), 电化学模型(EM), 机器学习模型

Abstract:

Objectives As one of the core technologies of battery management system (BMS), the research on lithium-ion battery model plays a vital role in optimizing battery performance and extending battery life. In order to facilitate the selection of appropriate models in different scenarios, different types of modeling methods for lithium-ion batteries are systematically summarized and compared. Methods Firstly, the working principle of lithium-ion battery is explained, and the importance of accurate modeling is emphasized. Then, the current widely used lithium-ion battery models is comprehensively summarized according to different application scenarios, and a series of novel machine learning battery models are analyzed and discussed. Finally, the challenges of lithium-ion battery modelling techniques and future research trends are discussed. Conclusions It is found that traditional battery models all have certain limitations, while data-driven models often have more unique advantages in dealing with complex systems. Future research needs to find a balance between model complexity and usability. The research results provide a reference for application and future development of lithium-ion batteries in energy storage systems.

Key words: lithium-ion batterie, energy storage, electric vehicle, battery management system (BMS), battery modeling, equivalent circuit model (ECM), electrochemical model (EM), machine learning model

中图分类号: