发电技术 ›› 2025, Vol. 46 ›› Issue (3): 541-555.DOI: 10.12096/j.2096-4528.pgt.25146

• AI在新型电力系统中的应用 • 上一篇    

基于人工智能的质子交换膜燃料电池状态估计及故障诊断

郑如意1, 杨博1, 周率2, 蒋林3, 李鸿彪4, 郜登科4   

  1. 1.昆明理工大学电力工程学院,云南省 昆明市 650500
    2.奥克兰理工大学电气与电子工程系,奥克兰 1010,新西兰
    3.英国利物浦大学电气工程与电子系,利物浦 L69 3GJ,英国
    4.上海科梁信息科技股份有限公司,上海市 闵行区 201103
  • 收稿日期:2025-03-16 修回日期:2025-05-06 出版日期:2025-06-30 发布日期:2025-06-16
  • 通讯作者: 杨博
  • 作者简介:郑如意(2001),女,硕士研究生,研究方向为电池参数识别及故障诊断技术,1209074918@qq.com
    杨博(1988),男,博士,教授,研究方向为基于人工智能的新能源系统优化与控制,本文通信作者,yangbo_ac@outlook.com
    周率(1987),女,博士,讲师,研究方向为电力系统控制、可再生能源并网技术、智能电网以及人工智能在电力系统中的应用,zoey.zhou@aut.ac.nz
    蒋林(1971),男,博士,教授,研究方向为智能电网控制与优化、新能源并网技术,L.Jiang@liverpool.ac.uk
    李鸿彪(1987),男,硕士,研究方向为电力电子和电力系统的实时仿真技术,hongbiao.li@keliangtek.com
    郜登科(1984),男,硕士,研究方向为新型电力系统仿真和稳定性分析,dengke.gao@keliangtek.com
  • 基金资助:
    国家自然科学基金项目(62263014);云南省自然科学基金项目(202401AT070344)

State Estimation and Fault Diagnosis of Proton Exchange Membrane Fuel Cells Based on Artificial Intelligence

Ruyi ZHENG1, Bo YANG1, Shuai ZHOU2, Lin JIANG3, Hongbiao LI4, Dengke GAO4   

  1. 1.Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China
    2.Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland 1010, New Zealand
    3.Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, United Kingdom
    4.Shanghai KeLiang Information Technology Co. , Ltd. , Minhang District, Shanghai 201103, China
  • Received:2025-03-16 Revised:2025-05-06 Published:2025-06-30 Online:2025-06-16
  • Contact: Bo YANG
  • Supported by:
    National Natural Science Foundation of China(62263014);Natural Science Foundation of Yunnan Province(202401AT070344)

摘要:

目的 质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)作为极具潜力的清洁能源技术,在能源转换领域备受关注。然而,PEMFC系统的高度复杂性及运行过程中存在的不确定性,使其状态估计和故障诊断面临诸多挑战,严重影响系统可靠性与安全性。为有效应对这些难题,对人工智能(artificial intelligence,AI)技术在PEMFC状态估计和故障诊断中的应用策略与成效进行了研究。 方法 分析了当前PEMFC在状态估计与故障诊断领域的研究进展。在状态估计领域,解析了PEMFC非线性模型特性,介绍了基于AI的状态估计技术,分析了不同算法在PEMFC状态估计中的应用原理及优势。在故障诊断领域,总结归纳了PEMFC常见故障类型,分析了故障表现及内部成因,介绍了基于AI的故障诊断技术。最后,对基于AI的PEMFC状态估计与故障诊断技术的未来发展提出了建议。 结论 AI技术能够凭借其强大的数据处理和模式识别能力,准确估计PEMFC的状态,有效诊断系统潜在故障,从而显著提升PEMFC系统的运行效率和稳定性,增强系统可靠性与安全性。未来,可在AI算法创新、状态估计与故障诊断优化、智能体系构建以及与其他技术协同合作等方面开展研究。

关键词: 清洁能源, 氢能, 人工智能(AI), 质子交换膜燃料电池(PEMFC), 状态估计, 故障诊断, 深度学习

Abstract:

Objectives The proton exchange membrane fuel cell (PEMFC), as a highly promising clean energy technology, has attracted much attention in the field of energy conversion. However, the high complexity and operational uncertainties of PEMFC systems pose significant challenges to state estimation and fault diagnosis, seriously affecting system reliability and safety. To effectively address these challenges, the application strategies and effectiveness of artificial intelligence (AI) technology in PEMFC state estimation and fault diagnosis are studied. Methods Current research progress on PEMFC state estimation and fault diagnosis is analyzed. In the field of state estimation, the nonlinear model characteristics of PEMFC are analyzed, AI-based state estimation technologies are introduced, and the application principles and advantages of different algorithms for PEMFC state estimation are analyzed. In the field of fault diagnosis, common fault types of PEMFC are summarized, their fault manifestations and internal causes are analyzed, and AI-based fault diagnosis technologies are introduced. Finally, the future prospects for AI-based PEMFC state estimation and fault diagnosis technologies are discussed. Conclusions With its powerful data processing and pattern recognition capabilities, AI technology can accurately estimate the state of PEMFC and effectively diagnose potential system faults, thereby significantly improving the the operational efficiency and stability of PEMFC systems and enhancing their reliability and safety. Future research can focus on areas such as AI algorithm innovation, optimization of state estimation and fault diagnosis, intelligent system development, and collaboration with other technologies.

Key words: clean energy, hydrogen energy, artificial intelligence (AI), proton exchange membrane fuel cell (PEMFC), state estimation, fault diagnosis, deep learning

中图分类号: