发电技术 ›› 2025, Vol. 46 ›› Issue (3): 521-531.DOI: 10.12096/j.2096-4528.pgt.24115
• AI在新型电力系统中的应用 • 上一篇
席磊1,2, 王艺晓1, 熊雅慧1, 董璐1
收稿日期:2024-06-23
修回日期:2024-07-25
出版日期:2025-06-30
发布日期:2025-06-16
作者简介:基金资助:Lei XI1,2, Yixiao WANG1, Yahui XIONG1, Lu DONG1
Received:2024-06-23
Revised:2024-07-25
Published:2025-06-30
Online:2025-06-16
Supported by:摘要:
目的 电力系统面临着虚假数据注入攻击的威胁,而已有的虚假数据注入攻击检测方法存在特征学习能力不足和检测速度较慢的问题,以至于无法对虚假数据注入攻击进行快速精确定位,因此提出一种基于Levy麻雀优化深度极限学习机的电网虚假数据注入攻击定位检测方法。 方法 所提方法将深度极限学习机作为特征提取算法和基础分类器来实现对攻击的快速精确定位;同时采用具有强局部搜索能力、融入Levy飞行策略的麻雀搜索算法对其初始权重与偏置进行优化,以进一步提高方法的定位检测精度。 结果 在IEEE-14和IEEE-57节点系统进行了大量仿真分析,所提方法的检测准确率在94%以上。 结论 与其他检测方法对比,所提方法具有更优的检测精度,可以实现更为快速的虚假数据注入攻击定位检测。
中图分类号:
席磊, 王艺晓, 熊雅慧, 董璐. 基于改进深度极限学习机的电网虚假数据注入攻击定位检测[J]. 发电技术, 2025, 46(3): 521-531.
Lei XI, Yixiao WANG, Yahui XIONG, Lu DONG. Location Detection of False Data Injection Attacks in Power Grid Based on Improved Deep Extreme Learning Machine[J]. Power Generation Technology, 2025, 46(3): 521-531.
| 1 | 陈家琪,王琦,汤奕,等 .考虑双侧特征的电力信息物理系统异常检测方法[J].电网技术,2022,46(6):2339-2348. |
| CHEN J Q, WANG Q, TANG Y,et al .Anomaly detection method for cyber physical power system considering bilateral features[J].Power System Technology,2022,46(6):2339-2348. | |
| 2 | 王琦,李梦雅,汤奕,等 .电力信息物理系统网络攻击与防御研究综述(一)建模与评估[J].电力系统自动化,2019,43(9):9-21. |
| WANG Q, LI M Y, TANG Y,et al .A review on research of cyber-attacks and defense in cyber physical power systems part one modelling and evaluation[J].Automation of Electric Power Systems,2019,43(9):9-21. | |
| 3 | 张亚健,彭晨,许东,等 .蓄意流量攻击下基于确定网络演算的互联电网自适应负荷频率控制策略[J].电力系统保护与控制,2023,51(13):70-81. |
| ZHANG Y J, PENG C, XU D,et al .Deterministic networked calculus-based adaptive load frequency control in interconnected power systems considering malicious traffic attacks[J].Power System Protection and Control,2023,51(13):70-81. | |
| 4 | 庞清乐,韩松易,周泰,等 .基于ASRUKF和IMC算法的电力信息物理系统虚假数据注入攻击检测[J].智慧电力,2024,52(7):111-118. |
| PANG Q L, HAN S Y, ZHOU T,et al .False data injection attack detection of cyber-physical power system based on ASRUKF and IMC algorithms[J].Smart Power,2024,52(7):111-118. | |
| 5 | 伊娜,徐建军,陈月,等 .基于深度强化学习的多阶段信息物理协同拓扑攻击方法[J].电力工程技术,2023,42(4):149-158. |
| YI N, XU J J, CHEN Y,et al .A multi-stage coordinated cyber-physical topology attack method based on deep reinforcement learning[J].Electric Power Engineering Technology,2023,42(4):149-158. | |
| 6 | LIU Y, NING P, REITER M K .False data injection attacks against state estimation in electric power grids[J].ACM Transactions on Information and System Security,2011,14(1):1-33. doi:10.1145/1952982.1952995 |
| 7 | YANG J, ZHANG W A, GUO F H .Distributed Kalman-like filtering and bad data detection in the large-scale power system[J].IEEE Transactions on Industrial Informatics,2022,18(8):5096-5104. doi:10.1109/tii.2021.3119136 |
| 8 | 黄冬梅,王一帆,胡安铎,等 .融合无监督和有监督学习的虚假数据注入攻击检测[J].电力工程技术,2024,43(2):134-141. |
| HUANG D M, WANG Y F, HU A D,et al .Detection method of false data injection attack based on unsupervised and supervised learning[J].Electric Power Engineering Technology,2024,43(2):134-141. | |
| 9 | 李卓,谢耀滨,吴茜琼,等 .基于深度学习的电力系统虚假数据注入攻击检测综述[J].电力系统保护与控制,2024,52(19):175-187. |
| LI Z, XIE Y B, WU Q Q,et al .Review of deep learning-based false data injection attack detection in power systems[J].Power System Protection and Control,2024,52(19):175-187. | |
| 10 | JORJANI M, SEIFI H, VARJANI A Y .A graph theory-based approach to detect false data injection attacks in power system AC state estimation[J].IEEE Transactions on Industrial Informatics,2021,17(4):2465-2475. doi:10.1109/tii.2020.2999571 |
| 11 | ZHOU T L, XIAHOU K S, ZHANG L L,et al .Real-time detection of cyber-physical false data injection attacks on power systems[J].IEEE Transactions on Industrial Informatics,2021,17(10):6810-6819. doi:10.1109/tii.2020.3048386 |
| 12 | 张程彬,崔明建,张梓枭,等 .考虑攻击偏好的三相不平衡配电系统分布式FDIA检测[J].电力系统保护与控制,2024,52(24):109-119. |
| ZHANG C B, CUI M J, ZHANG Z X,et al .Distributed FDIA detection for three-phase unbalanced distribution systems considering attack preferences[J].Power System Protection and Control,2024,52(24):109-119. | |
| 13 | 陈将宏,饶佳黎,李伟亮,等 .基于向量自回归模型的电网虚假数据注入攻击检测[J].电力科学与技术学报,2024,39(3):1-9. |
| CHEN J H, RAO J L, LI W L,et al .Detection method of false data injection attacks on power grids based on vector auto-regression model[J].Journal of Electric Power Science and Technology,2024,39(3):1-9. | |
| 14 | MOHAMMADPOURFARD M, WENG Y, PECHENIZKIY M,et al .Ensuring cybersecurity of smart grid against data integrity attacks under concept drift[J].International Journal of Electrical Power & Energy Systems,2020,119:105947. doi:10.1016/j.ijepes.2020.105947 |
| 15 | CAMANA ACOSTA M R, AHMED S, GARCIA C E,et al .Extremely randomized trees-based scheme for stealthy cyber-attack detection in smart grid networks[J].IEEE Access,2020,8:19921-19933. doi:10.1109/access.2020.2968934 |
| 16 | OZAY M, ESNAOLA I, YARMAN VURAL F T,et al .Machine learning methods for attack detection in the smart grid[J].IEEE Transactions on Neural Networks and Learning Systems,2016,27(8):1773-1786. doi:10.1109/tnnls.2015.2404803 |
| 17 | CHEN B R, WU Q H, LI M S,et al .Detection of false data injection attacks on power systems using graph edge-conditioned convolutional networks[J].Protection and Control of Modern Power Systems,2023,8(2):1-12. doi:10.1186/s41601-023-00287-w |
| 18 | ALIMI O A, OUAHADA K, ABU-MAHFOUZ A M .Real time security assessment of the power system using a hybrid support vector machine and multilayer perceptron neural network algorithms[J].Sustainability,2019,11(13):3586. doi:10.3390/su11133586 |
| 19 | WU T, XUE W L, WANG H Z,et al .Extreme learning machine-based state reconstruction for automatic attack filtering in cyber physical power system[J].IEEE Transactions on Industrial Informatics,2021,17(3):1892-1904. doi:10.1109/tii.2020.2984315 |
| 20 | 席磊,何苗,周博奇,等 .基于改进多隐层极限学习机的电网虚假数据注入攻击检测[J].自动化学报,2023,49(4):881-890. |
| XI L, HE M, ZHOU B Q,et al .Research on false data injection attack detection in power system based on improved multi layer extreme learning machine[J].Acta Automatica Sinica,2023,49(4):881-890. | |
| 21 | 杨玉泽,刘文霞,李承泽,等 .面向电力SCADA系统的FDIA检测方法综述[J].中国电机工程学报,2023,43(22):8602-8622. |
| YANG Y Z, LIU W X, LI C Z,et al .A survey of FDIA detection methods for power SCADA systems[J].Proceedings of the CSEE,2023,43(22):8602-8622. | |
| 22 | XUE W L, WU T .Active learning-based XGBoost for cyber physical system against generic AC false data injection attacks[J].IEEE Access,2020,8:144575-144584. doi:10.1109/access.2020.3014644 |
| 23 | HUANG G B, ZHU Q Y, SIEW C K .Extreme learning machine:theory and applications[J].Neurocomputing,2006,70(1/2/3):489-501. doi:10.1016/j.neucom.2005.12.126 |
| 24 | KASUN L, ZHOU H, HUANG G B,et al .Representational learning with elms for big data[J].IEEE Intelligent Systems,2013,28:31-34. |
| 25 | XUE J K, SHEN B .A novel swarm intelligence optimization approach:sparrow search algorithm[J].Systems Science & Control Engineering,2020,8(1):22-34. doi:10.1080/21642583.2019.1708830 |
| 26 | 王艳,李伟,赵洪山,等 .基于油中溶解气体分析的DBN-SSAELM变压器故障诊断方法[J].电力系统保护与控制,2023,51(4):32-42. |
| WANG Y, LI W, ZHAO H S,et al .Transformer DGA fault diagnosis method based on DBN-SSAELM[J].Power System Protection and Control,2023,51(4):32-42. | |
| 27 | 曾亮,雷舒敏,王珊珊,等 .基于OVMD-SSA-DELM-GM模型的超短期风电功率预测方法[J].电网技术,2021,45(12):4701-4712. |
| ZENG L, LEI S M, WANG S S,et al .Ultra-short-term wind power prediction based on OVMD-SSA-DELM-GM model[J].Power System Technology,2021,45(12):4701-4712. | |
| 28 | 马宏忠,宣文婧,朱沐雨,等 .基于LWOA-LSTM的大容量锂电池SOC估计[J].中国电力,2024,57(6):37-44. |
| MA H Z, XUAN W J, ZHU M Y,et al .SOC estimation of large capacity lithium batteries based on LWOA-LSTM[J].Electric Power,2024,57(6):37-44. | |
| 29 | 席磊,王艺晓,何苗,等 .基于反向鲸鱼‒多隐层极限学习机的电网FDIA检测[J].中国电力,2024,57(9):20-31. |
| XI L, WANG Y X, HE M,et al .FDIA detection in power grid based on opposition-based whale optimization algorithm and multi-layer extreme learning machine[J].Electric Power,2024,57(9):20-31. | |
| 30 | WANG S Y, BI S Z, ZHANG Y A .Locational detection of the false data injection attack in a smart grid:a multilabel classification approach[J].IEEE Internet of Things Journal,2020,7(9):8218-8227. doi:10.1109/jiot.2020.2983911 |
| [1] | 张俊, 蒲天骄, 高文忠, 刘友波, 裴玮, 许沛东, 高天露, 白昱阳. 电力系统智能计算的关键技术及应用展望[J]. 发电技术, 2025, 46(3): 421-437. |
| [2] | 张祖菡, 刘敦楠, 凡航, 杨柳青, 段赟杰, 李赟, 马振宇. 基于大语言模型的电力系统预测技术研究综述[J]. 发电技术, 2025, 46(3): 438-453. |
| [3] | 徐浩然, 张瑾昀, 马歆, 雷文强, 曹杰铭. 基于大语言模型的图检索增强生成技术在核电领域的应用与展望[J]. 发电技术, 2025, 46(3): 454-466. |
| [4] | 陈艺璇, 王嘉阳, 卓映君, 卢斯煜, 周保荣. 人工智能在电力系统运行模拟加速中的应用综述[J]. 发电技术, 2025, 46(3): 467-481. |
| [5] | 杨博, 张子健. 基于人工智能的可再生能源电解水制氢关键技术及发展前景分析[J]. 发电技术, 2025, 46(3): 482-495. |
| [6] | 刘宿城, 栾李, 李龙, 洪涛, 刘晓东. 基于人工智能的直流微电网大信号稳定性评估方法研究[J]. 发电技术, 2025, 46(3): 496-507. |
| [7] | 闫正义, 赵康, 王凯. 基于强化学习的新型电力系统优化策略应用综述[J]. 发电技术, 2025, 46(3): 508-520. |
| [8] | 赵睿智, 练小林, 应凯文, 柳杰, 李丝雨, 高扬. 基于改进二进制粒子群优化算法的综合能源系统故障定位研究[J]. 发电技术, 2025, 46(2): 231-239. |
| [9] | 刘忠, 黄彦铭, 朱光明, 邹淑云. 含风-光-电氢混合储能的多微电网系统容量优化配置方法[J]. 发电技术, 2025, 46(2): 240-251. |
| [10] | 王奎, 余梦, 张海静, 李妍, 刘哲, 郭军红. 面向光伏消纳和冰蓄冷空调群低碳需求响应的新型配电系统多时间尺度优化策略[J]. 发电技术, 2025, 46(2): 284-295. |
| [11] | 孙正龙, 伞吉强. 面向扭振分析的含虚拟惯量双馈风机轴系研究[J]. 发电技术, 2025, 46(2): 314-325. |
| [12] | 张扬帆, 李奕霖, 叶林, 付雪姣, 王正宇, 王耀函. 低温天气下考虑风机运行状态聚类的短期风电功率预测方法[J]. 发电技术, 2025, 46(2): 326-335. |
| [13] | 雷基林, 余林兴, 别玉, 徐稚博, 肖雨寒. 孤岛微电网能量管理系统研究综述[J]. 发电技术, 2025, 46(2): 370-385. |
| [14] | 郑杨, 任禹丞, 王雨薇, 徐丁吉, 杨慧敏. 基于改进云模型的区域电网电能替代综合效益评价[J]. 发电技术, 2025, 46(2): 399-408. |
| [15] | 李航, 郭昆丽, 杨鹏, 吕家君, 任蓓蕾, 曲晨明, 朱婷华, 郝翊帆. 基于改进模糊线性自抗扰的LCL型并网逆变器控制策略[J]. 发电技术, 2025, 46(2): 409-420. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||