发电技术 ›› 2025, Vol. 46 ›› Issue (3): 521-531.DOI: 10.12096/j.2096-4528.pgt.24115

• AI在新型电力系统中的应用 • 上一篇    

基于改进深度极限学习机的电网虚假数据注入攻击定位检测

席磊1,2, 王艺晓1, 熊雅慧1, 董璐1   

  1. 1.三峡大学电气与新能源学院,湖北省 宜昌市 443002
    2.梯级水电站运行与 控制湖北省重点实验室(三峡大学),湖北省 宜昌市 443002
  • 收稿日期:2024-06-23 修回日期:2024-07-25 出版日期:2025-06-30 发布日期:2025-06-16
  • 作者简介:席磊(1982),男,博士,教授,研究方向为电力系统运行与控制、自动发电控制、信息物理系统网络攻击与防御、智能控制方法,xilei2014@163.com
    王艺晓(2000),女,硕士研究生,研究方向为电力系统网络攻击与防御,wangyx169@163.com
    熊雅慧(2000),女,硕士研究生,研究方向为电力系统网络攻击与防御,xiongyahui6@163.com
    董璐(2000),女,硕士研究生,研究方向为电力系统网络攻击与防御,lu15275425765@163.com
  • 基金资助:
    国家自然科学基金项目(52477104)

Location Detection of False Data Injection Attacks in Power Grid Based on Improved Deep Extreme Learning Machine

Lei XI1,2, Yixiao WANG1, Yahui XIONG1, Lu DONG1   

  1. 1.College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, Hubei Province, China
    2.Hubei Provincial Key Laboratory for Operation and Control of Cascaded Hydropower Station (China Three Gorges University), Yichang 443002, Hubei Province, China
  • Received:2024-06-23 Revised:2024-07-25 Published:2025-06-30 Online:2025-06-16
  • Supported by:
    National Natural Science Foundation of China(52477104)

摘要:

目的 电力系统面临着虚假数据注入攻击的威胁,而已有的虚假数据注入攻击检测方法存在特征学习能力不足和检测速度较慢的问题,以至于无法对虚假数据注入攻击进行快速精确定位,因此提出一种基于Levy麻雀优化深度极限学习机的电网虚假数据注入攻击定位检测方法。 方法 所提方法将深度极限学习机作为特征提取算法和基础分类器来实现对攻击的快速精确定位;同时采用具有强局部搜索能力、融入Levy飞行策略的麻雀搜索算法对其初始权重与偏置进行优化,以进一步提高方法的定位检测精度。 结果 在IEEE-14和IEEE-57节点系统进行了大量仿真分析,所提方法的检测准确率在94%以上。 结论 与其他检测方法对比,所提方法具有更优的检测精度,可以实现更为快速的虚假数据注入攻击定位检测。

关键词: 电网, 人工智能(AI), 电力系统, 虚假数据注入攻击, 深度极限学习机, Levy飞行, 麻雀搜索算法, 定位检测, 特征提取

Abstract:

Objectives Power systems are facing threats of false data injection attacks. Existing detection methods for false data injection attacks have the problems of insufficient feature learning ability and slow detection speed, making it difficult to locate false data injection attacks rapidly and accurately. Therefore, this study proposes a method for locating false data injection attacks in power grid based on deep extreme learning machine optimized by Levy flying sparrow search algorithm. Methods The proposed method uses a deep extreme learning machine as the feature extraction algorithm and basic classifier to achieve rapid and accurate attack location. At the same time, a Levy flying sparrow search algorithm with strong local search ability is employed to optimize the initial weight and bias to further improve the location detection accuracy of the method. Results Extensive simulation analyses are conducted on IEEE-14 and IEEE-57 bus power systems. The proposed method achieves a detection accuracy rate of over 94%. Conclusions Compared with other detection methods, the proposed method demonstrates better detection accuracy and enables faster location detection of false data injection attacks.

Key words: power grid, artifical intelligence(AI), power system, false data injection attack, deep extreme learning machine, Levy flying, sparrow search algorithm, location detection, feature extraction

中图分类号: