发电技术 ›› 2025, Vol. 46 ›› Issue (2): 314-325.DOI: 10.12096/j.2096-4528.pgt.24015
• 新能源 • 上一篇
孙正龙, 伞吉强
收稿日期:
2024-03-22
修回日期:
2024-06-30
出版日期:
2025-04-30
发布日期:
2025-04-23
作者简介:
基金资助:
Zhenglong SUN, Jiqiang SAN
Received:
2024-03-22
Revised:
2024-06-30
Published:
2025-04-30
Online:
2025-04-23
Supported by:
摘要:
目的 风电机组轴系数学模型是扭振特性分析的基础,轴系模型对分析结果可靠性至关重要。为更精准地分析虚拟惯量引入后对传动链扭振特性的影响,对含虚拟惯量控制的双馈风机轴系建模问题开展了研究。 方法 确定仿真模型后,设计了阻尼控制器,该控制器可以抑制虚拟惯量控制引起的轴系扭振。首先,通过建立各种轴系的数学模型,建立基于虚拟惯量控制的风机系统动力学模型,并采用模态分析方法确定了影响机组轴系扭振特性的关键状态变量;其次,从含虚拟惯量控制的风机扭振特性以及风机轴系、同步机动态交互2个方面,研究了风机不同轴系模型的适用性;最后,通过仿真分析验证了阻尼控制器的有效性。 结果 采用虚拟惯量控制可以有效地改善因风电并网而引起的系统惯性衰减问题,但同时也会降低系统的阻尼比。2质量模型扭振模态的可观性更强,2质量轴系模型对虚拟惯量参数的变化更敏感。3质量模型轴系扭振相较2质量模型变化更大。 结论 含虚拟惯量控制的2质量轴系模型更适合风机轴系扭振分析。
中图分类号:
孙正龙, 伞吉强. 面向扭振分析的含虚拟惯量双馈风机轴系研究[J]. 发电技术, 2025, 46(2): 314-325.
Zhenglong SUN, Jiqiang SAN. Research on Doubly-Fed Wind Turbine Shaft System With Virtual Inertia for Torsional Vibration Analysis[J]. Power Generation Technology, 2025, 46(2): 314-325.
轴系系统模型 | 阻尼比 | 振荡频率/Hz |
---|---|---|
2质量块 | 0.3 | 2.103 |
3质量块 | 0.05 | 1.686 |
0.12 | 2.195 |
表1 不同轴系模型的轴系模态
Tab. 1 Axis modalities for different axis system models
轴系系统模型 | 阻尼比 | 振荡频率/Hz |
---|---|---|
2质量块 | 0.3 | 2.103 |
3质量块 | 0.05 | 1.686 |
0.12 | 2.195 |
状态变量 | 2质量模型 轴系模态 | 3质量模型 | |
---|---|---|---|
轴系模态1 | 轴系模态2 | ||
dphi23 | 0 | 0.012 | 1 |
Speed_tur | 1 | 1 | 0.905 |
speed_2 | 0.457 | 0.511 | 0.118 |
dphi12 | 0.906 | 0.078 | 0.013 |
speed_3 | 0.013 | 0.428 | 0 |
表2 不同轴系振荡模态参与因子
Tab. 2 Participation factors of oscillation modes of different axis systems
状态变量 | 2质量模型 轴系模态 | 3质量模型 | |
---|---|---|---|
轴系模态1 | 轴系模态2 | ||
dphi23 | 0 | 0.012 | 1 |
Speed_tur | 1 | 1 | 0.905 |
speed_2 | 0.457 | 0.511 | 0.118 |
dphi12 | 0.906 | 0.078 | 0.013 |
speed_3 | 0.013 | 0.428 | 0 |
1 | 汲国强,吴姗姗,谭显东,等 .2021年我国电力供需形势分析及展望[J].发电技术,2021,42(5):568-575. doi:10.12096/j.2096-4528.pgt.21103 |
JI G Q, WU S S, TAN X D,et al .Analysis and prospect of China’s power supply and demand situation in 2021[J].Power Generation Technology,2021,42(5):568-575. doi:10.12096/j.2096-4528.pgt.21103 | |
2 | 孙正龙,李浩博,刘铖,等 .含虚拟惯量的双馈风电机组扭振阻尼特性分析与抑制方法研究[J].电网技术,2021,45(12):4671-4682. |
SUN Z L, LI H B, LIU C,et al .Research methods forsubsynchronous oscillation induced by wind power under weak AC system:a review[J].Power System Technology,2021,45(12):4671-4682. | |
3 | 王泽嘉,韩民晓,范溢文 .基于SVG附加电流反馈阻抗重塑的双馈风电场次/超同步振荡抑制策略[J].中国电力,2024,57(8):55-66. |
WANG Z J, HAN M X, FAN Y W .Suppression strategy of sub/super-synchronous oscillations in doubly-fed wind farm based on SVG additional current feedback impedance reshaping[J].Electric Power,2024,57(8):55-66. | |
4 | 申洪,周勤勇,刘耀,等 .碳中和背景下全球能源互联网构建的关键技术及展望[J].发电技术,2021,42(1):8-19 . doi:10.12096/j.2096-4528.pgt.20113 |
SHEN H, ZHOU Q Y, LIU Y .Key technologies and prospects for the construction of global energy internet under the background of carbon neutral[J].Power Generation Technology,2021,42(1):8-19. doi:10.12096/j.2096-4528.pgt.20113 | |
5 | 林旭,李军,杨德健,等 .基于功率轨迹预设的双馈风电机组虚拟惯量控制策略[J].智慧电力,2023,51(10):47-53. doi:10.3969/j.issn.1673-7598.2023.10.007 |
LIN X, LI J, YANG D J,et al .Virtual inertia control strategy for doubly-fed induction generator based on preset power trajectory[J].Smart Power,2023,51(10):47-53. doi:10.3969/j.issn.1673-7598.2023.10.007 | |
6 | 李雪萍,王自力,陈燕东,等 .基于虚拟惯量模糊自适应的新能源逆变器频率主动支撑策略[J].电力系统保护与控制,2024,52(20):25-37. |
LI X P, WANG Z L, CHEN Y D,et al .Active frequency support strategy for new energy inverters based on virtual inertia fuzzy adaptive control[J].Power System Protection and Control,2024,52(20):25-37. | |
7 | 蒋小亮,李元臣,郝元钊,等 .计及新能源虚拟惯量的电力系统等效惯量评估[J].电力科学与技术学报,2023,38(4):169-176. |
JIANG X L, LI Y C, HAO Y Z,et al .Evaluation of power system equivalent inertia considering new energy virtual inertia[J].Journal of Electric Power Science and Technology,2023,38(4):169-176. | |
8 | 张祥宇,胡剑峰,付媛,等 .风储联合系统的虚拟惯量需求与协同支撑[J].电工技术学报,2024,39(3):672-685. |
ZHANG X Y, HU J F, FU Y,et al .Virtual inertia demand and collaborative support of wind power and energy storage system[J].Transactions of China Electrotechnical Society,2024,39(3):672-685. | |
9 | MUYEEN S M, HASANALI M D, TAKAHASHI R,et al .Comparative study on transient stability analysis of wind turbine generator system using different drive train models[J].IET Renew Power Generation,2007,1(2):131-141. doi:10.1049/iet-rpg:20060030 |
10 | VIJAY P S, NAND K, PAULAON S,et al .Small-signal stability analysis for two-mass and three-mass shaft model of wind turbine integrated to thermal power[J].Computers and Electrical Engineering,2019,1(2):271-287. |
11 | 徐筱倩,黄林彬,汪震,等 .双馈风电机组虚拟惯量控制对电力系统机电振荡的影响分析[J].电机与控制学报,2019,43(12):11-17. |
XU X Q, HUANG L B, WANG Z,et al .Analysis on impact of virtual inertia control of DFIG-based wind turbine on electromechanical oscillation of power system[J].Automation of Electric Power Systems,2019,43(12):11-17. | |
12 | 章德,刘峰,梅生伟,等 .双馈风机虚拟惯量控制对传动系统扭振影响[J].电机与控制学报,2015,19(10):78-86. |
ZHANG D, LIU F, MEI S W,et al .Effect of virtual inertia control on drive train torsional vibrations in dou-bly fed wind turbines[J].Electrical Machines and Control,2015,19(10):78-86. | |
13 | 边晓燕,刘洁,周歧斌 .DFIG虚拟惯量控制对轴系振荡的影响[J].太阳能学报,2022,41(10):285-291. |
BIAN X Y, LIU J, ZHOU Q B .Effect of DFIG virtual inertia control on shaft system oscillation[J].Acta Energiae Solaris Sinica,2022,41(10):285-291. | |
14 | 娄宇成,解大,冯俊淇,等 .基于三质量块模型的失速型风机小信号建模和模态分析[J].电力自动化设备,2015,35(8):124-130. |
LOU Y C, XIE D, FNEG J Q,et al .Small-signal modeling and modal analysis based on three-mass shaft model for stall wind turbine[J].Electric Power Automation Equipment,2015,35(8):124-130. | |
15 | 奚鑫泽,耿华,杨耕 .含主动轴系扭振阻尼的并网双馈风电场惯量控制方法[J].电工技术学报,2017,32(6):136-144. |
XI X Z, GENG H, YANG G .Inertia control of the grid connected doubly fed induction generator based wind farm with drive train torsion active damping[J].Transactions of China Electromechanical Society,2017,32(6):136-144. | |
16 | 薛安成,王清,毕天姝 .双馈风机与同步机小扰动功角互作用机理分析[J].中国电机工程学报,2016,36(2):417-425. doi:10.13334/j.0258-8013.pcsee.2016.02.012 |
XUE A C, WANG Q, BI T S .Study on the mechanism of small signal dynamic interaction between doubly-fed induction generator and synchronous generator[J].Proceedings of the CSEE,2016,36(2):417-425. doi:10.13334/j.0258-8013.pcsee.2016.02.012 | |
17 | LAKS J H, PAO L Y, WRIGHT A D .Control of wind turbines:past,present,and future[C]//American Control Conference.St. Louis,MO,USA:IEEE,2009:2096-2103. doi:10.1109/acc.2009.5160590 |
18 | 朱兴林 .并网运行的直驱风力发电系统建模及仿真研究[J].工业控制计算机,2011,24(8):48-52. doi:10.3969/j.issn.1001-182X.2011.08.027 |
ZHU X L .Modeling and simulation of grid connected direct-driven wind power generation system[J].Industrial Control Computer,2011,24(8):48-52. doi:10.3969/j.issn.1001-182X.2011.08.027 | |
19 | KRPAN M, KUZLE I .Transient stability analysis of grid connected wind turbine generator system considering multi-mass shaft modeling[J].Electric Power Systems Research,2020,178:106005. doi:10.1016/j.epsr.2019.106005 |
20 | 邢鹏翔,侍乔明,王 刚,等 .风电机组虚拟惯量控制的响应特性及机理分析[J].高电压技术,2018,44(4):1302-1310. doi:10.13336/j.1003-6520.hve.20180329033 |
XING P X, SHI Q M, WANG G,et al .Response characteristics and mechanism analysis of virtual inertia control of wind turbine[J].High Voltage Technology,2018,44(4):1302-1310. doi:10.13336/j.1003-6520.hve.20180329033 | |
21 | 王刚,侍乔明,付立军,等 .虚拟惯量控制方式下永磁风力发电机组轴系扭振机理分析[J].电机与控制学报,2014,18(8):8-16. doi:10.3969/j.issn.1007-449X.2014.08.002 |
WANG G, SHI Q M, FU L J,et al .Mechanism analysis of torsional vibration for directly-driven wind turbine with permanent magnet synchronous generator shaft system with virtual inertia control[J].Electrical Machines and Control,2014,18(8):8-16. doi:10.3969/j.issn.1007-449X.2014.08.002 | |
22 | 张祥宇,朱正振,付媛 .风电并网系统的虚拟同步稳定分析与惯量优化控制[J].高电压技术,2020,46(8):2922-2932. |
ZHANG X Y, ZHU Z Z, FU Y,et al .Virtual synchronous stability analysis and inertia optimization control of wind power grid-connected systems[J].High Voltage Technology,2020,46(8):2922-2932. | |
23 | 张祥宇,付媛,王毅,等 .含虚拟惯性与阻尼控制的变速风电机组综合PSS控制器[J].电工技术学报,2015,30(1):159-169. doi:10.3969/j.issn.1000-6753.2015.01.021 |
ZHANG X Y, FU Y, WANG Y .Integrated PSS controller of variable speed wind turbines with virtual inertia and damping control[J].Transactions of China Electromechanical Society,2015,30(1):159-169. doi:10.3969/j.issn.1000-6753.2015.01.021 | |
24 | 王鹏敏 .并网双馈感应风电机组的稳定性与轴系扭振特性的研究[D].太原:太原理工大学,2011. |
WANG P M .Study of stability and shaft torsional vibration characteristics of grid-connected doubly-fed induction wind turbines[D].Taiyuan:Taiyuan University of Technology,2011. |
[1] | 付红军, 朱劭璇, 王步华, 谢岩, 熊浩清, 唐晓骏, 杜晓勇, 李程昊, 李晓萌. 基于长短期记忆神经网络的检修态电网低频振荡风险预测方法[J]. 发电技术, 2024, 45(2): 353-362. |
[2] | 闫红艳, Kwon Hwang Jin, 高艳丰. 基于类噪声数据的电力系统低频振荡模态参数辨识[J]. 发电技术, 2022, 43(1): 19-31. |
[3] | 张斌,张超,韩晓娟. 含规模化风电并网的负荷频率云PI控制策略研究[J]. 发电技术, 2019, 40(6): 516-520. |
[4] | 范丽霞,蔡瑞强,张欢畅,魏远,田恬,胡斌. 电压型虚拟同步发电机控制策略下的双馈风电机组阻抗及次同步振荡特性[J]. 发电技术, 2019, 40(5): 434-439. |
[5] | 吴明哲,陈武晖. VSC-HVDC稳定控制研究[J]. 发电技术, 2019, 40(1): 28-39. |
[6] | 马世英,王青. 大规模新能源集中外送系统源网协调风险及仿真评估[J]. 发电技术, 2018, 39(2): 112-117. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||