发电技术 ›› 2025, Vol. 46 ›› Issue (3): 482-495.DOI: 10.12096/j.2096-4528.pgt.24167

• AI在新型电力系统中的应用 • 上一篇    

基于人工智能的可再生能源电解水制氢关键技术及发展前景分析

杨博, 张子健   

  1. 昆明理工大学电力工程学院,云南省 昆明市 650500
  • 收稿日期:2024-08-01 修回日期:2024-09-05 出版日期:2025-06-30 发布日期:2025-06-16
  • 作者简介:杨博(1988),男,博士,教授,研究方向为基于人工智能的新能源系统优化与控制,yangbo_ac@outlook.com
    张子健(2000),男,硕士研究生,研究方向为分布式电源发电与控制技术,820546128@qq.com
  • 基金资助:
    国家自然科学基金项目(62263014);云南省应用基础研究计划项目(202401AT070344)

Analysis of Key Technologies and Development Prospects for Renewable Energy-Powered Water Electrolysis for Hydrogen Production Based on Artificial Intelligence

Bo YANG, Zijian ZHANG   

  1. School of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China
  • Received:2024-08-01 Revised:2024-09-05 Published:2025-06-30 Online:2025-06-16
  • Supported by:
    Foundation:National Natural Science Foundation of China(62263014);Yunnan Provincial Basic Research Project(202401AT070344)

摘要:

目的 可再生能源电解水制氢作为一种重要的可持续能源技术,因其环保和低碳排放优势,得到了广泛关注。然而,传统电解水制氢技术在效率和成本方面存在挑战,人工智能(artificial intelligence,AI)的快速发展为解决电解水制氢技术的难点问题提供了有效途径。为此,探讨AI在优化电解水制氢系统效率和经济性中的关键应用及其发展前景。 方法 利用常用AI工具,如MATLAB、Python和SimuNPS,在电解水制氢系统中进行算法开发、深度学习模型训练和多物理场仿真。通过引入AI技术实现出力预测、系统容量优化与调度、故障诊断等应用,提升系统性能和稳定性。通过对比分析不同AI模型在多种实际场景下的表现,探讨其在提升系统性能与可控性方面的具体作用与实现方式。 结论 AI技术为可再生能源电解水制氢系统的效率提升与智能调度提供新思路。未来研究应重点聚焦AI在出力预测、调度优化和故障诊断等方面的应用,推动AI与系统运行的深度融合,探索其在智能监测、自动控制和多源协同中的创新应用,为构建高效、稳定、低碳的氢能系统提供有力支撑。

关键词: 可再生能源, 电解水制氢, 人工智能(AI), 深度学习, 碱性电解槽, 质子交换膜电解槽, 故障诊断

Abstract:

Objectives As an essential sustainable energy technology, renewable energy-powered water electrolysis for hydrogen production has attracted widespread attention due to its advantages in environmental protection and low carbon emissions. However, conventional water electrolysis technologies for hydrogen production face challenges in terms of efficiency and cost, the rapid development of artificial intelligence (AI) provides an effective way to solve the difficult problems of hydrogen production technology through electrolysis of water. To address this, this study aims to explore the key applications and development prospects of AI for optimizing the efficiency and economic performance of water electrolysis systems for hydrogen production. Methods Common AI tools such as MATLAB, Python, and SimuNPS are employed for algorithm development, deep learning model training, and multi-physics simulation in water electrolysis systems for hydrogen production. By integrating AI technologies, applications such as output prediction, system capacity optimization and scheduling, and fault diagnosis are implemented to improve system performance and stability. A comparative analysis of performance of different AI models in various real-world scenarios is conducted to explore their specific roles and implementation methods in enhancing system performance and controllability. Conclusions AI technology offers new avenues for enhancing the efficiency and intelligent scheduling of renewable energy-powered water electrolysis hydrogen production systems. Future research should focus on the application of AI in output forecasting, scheduling optimization, and fault diagnosis, promoting deep integration between AI and system operation. Moreover, innovative applications of AI in intelligent monitoring, automatic control, and multi-source coordination should be explored to provide strong support for the development of efficient, stable, and low-carbon hydrogen energy systems.

Key words: renewable energy, water electrolysis for hydrogen production, artificial intelligence(AI), deep learning, alkaline electrolyzer, proton exchange membrane electrolyzer, fault diagnosis

中图分类号: