发电技术 ›› 2025, Vol. 46 ›› Issue (3): 482-495.DOI: 10.12096/j.2096-4528.pgt.24167
• AI在新型电力系统中的应用 • 上一篇
杨博, 张子健
收稿日期:
2024-08-01
修回日期:
2024-09-05
出版日期:
2025-06-30
发布日期:
2025-06-16
作者简介:
基金资助:
Bo YANG, Zijian ZHANG
Received:
2024-08-01
Revised:
2024-09-05
Published:
2025-06-30
Online:
2025-06-16
Supported by:
摘要:
目的 可再生能源电解水制氢作为一种重要的可持续能源技术,因其环保和低碳排放优势,得到了广泛关注。然而,传统电解水制氢技术在效率和成本方面存在挑战,人工智能(artificial intelligence,AI)的快速发展为解决电解水制氢技术的难点问题提供了有效途径。为此,探讨AI在优化电解水制氢系统效率和经济性中的关键应用及其发展前景。 方法 利用常用AI工具,如MATLAB、Python和SimuNPS,在电解水制氢系统中进行算法开发、深度学习模型训练和多物理场仿真。通过引入AI技术实现出力预测、系统容量优化与调度、故障诊断等应用,提升系统性能和稳定性。通过对比分析不同AI模型在多种实际场景下的表现,探讨其在提升系统性能与可控性方面的具体作用与实现方式。 结论 AI技术为可再生能源电解水制氢系统的效率提升与智能调度提供新思路。未来研究应重点聚焦AI在出力预测、调度优化和故障诊断等方面的应用,推动AI与系统运行的深度融合,探索其在智能监测、自动控制和多源协同中的创新应用,为构建高效、稳定、低碳的氢能系统提供有力支撑。
中图分类号:
杨博, 张子健. 基于人工智能的可再生能源电解水制氢关键技术及发展前景分析[J]. 发电技术, 2025, 46(3): 482-495.
Bo YANG, Zijian ZHANG. Analysis of Key Technologies and Development Prospects for Renewable Energy-Powered Water Electrolysis for Hydrogen Production Based on Artificial Intelligence[J]. Power Generation Technology, 2025, 46(3): 482-495.
参数 | AWE | PEMWE | SOEC | AEMWE |
---|---|---|---|---|
电解质 | 10%~40%KOH | 质子交换膜 | 固体聚合物 | 阴离子交换膜 |
电荷载体 | OH- | H+ | O2- | OH- |
电流密度/(A⋅cm-2) | 0.2~0.8 | 1~2 | 0.3~1 | 0.2~2 |
电极面积/cm2 | 10 000~30 000 | 1 500 | 200 | <300 |
效率/% | 62~82 | 67~84 | 90 | <74 |
工作温度/℃ | 70~90 | 50~80 | 700~850 | 40~60 |
工作压力/MPa | 0.1~3 | <7 | 0.1 | <3.5 |
产氢纯度/% | 99.9~99.999 8 | 99.9~99.999 9 | 99.9 | >99.9 |
冷启动/min | 30~120 | <15 | >600 | <20 |
热启动 | 分钟级 | 秒级 | — | — |
负载范围/% | 15~100 | 5~120 | — | 5~100 |
运行寿命/h | 60 000 | 50 000~80 000 | <20 000 | >5 000 |
投资成本 | 270美元/kW | 400美元/kW | >2 000美元/kW | — |
技术成熟度 | 成熟、商业化 | 商业化 | 实验室阶段 | 实验室阶段 |
表1 4种电解水技术特点及信息
Tab. 1 Characteristics and information of four water electrolysis technologies
参数 | AWE | PEMWE | SOEC | AEMWE |
---|---|---|---|---|
电解质 | 10%~40%KOH | 质子交换膜 | 固体聚合物 | 阴离子交换膜 |
电荷载体 | OH- | H+ | O2- | OH- |
电流密度/(A⋅cm-2) | 0.2~0.8 | 1~2 | 0.3~1 | 0.2~2 |
电极面积/cm2 | 10 000~30 000 | 1 500 | 200 | <300 |
效率/% | 62~82 | 67~84 | 90 | <74 |
工作温度/℃ | 70~90 | 50~80 | 700~850 | 40~60 |
工作压力/MPa | 0.1~3 | <7 | 0.1 | <3.5 |
产氢纯度/% | 99.9~99.999 8 | 99.9~99.999 9 | 99.9 | >99.9 |
冷启动/min | 30~120 | <15 | >600 | <20 |
热启动 | 分钟级 | 秒级 | — | — |
负载范围/% | 15~100 | 5~120 | — | 5~100 |
运行寿命/h | 60 000 | 50 000~80 000 | <20 000 | >5 000 |
投资成本 | 270美元/kW | 400美元/kW | >2 000美元/kW | — |
技术成熟度 | 成熟、商业化 | 商业化 | 实验室阶段 | 实验室阶段 |
应用方面 | 方法 | 方法描述 |
---|---|---|
特征选择 | 包裹法 | 使用特定的机器学习算法(如递归特征消除)评估特征的重要性 |
嵌入法 | 在模型训练过程中自动进行特征选择,如Lasso回归和树模型中的特征重要性评分 | |
特征工程 | 特征组合 | 将多个特征进行交叉、相乘或其他组合操作,生成新的特征,如交叉特征、交互特征 |
特征生成 | 通过聚类、自动编码器等方法,从原始数据中生成新的、更具代表性的特征 | |
特征降维 | 主成分分析 | 将原始特征投影到一个低维空间,保留数据的主要信息,通过主成分提取数据的主要变异,减少特征数量 |
线性判别分析 | 寻找能够最大化类间方差与类内方差比值的特征组合,常用于分类任务,通过线性变换找到能区分不同类别的特征组合 | |
t-SNE和UMAP | 适用于高维数据的可视化和降维。t-SNE和UMAP是2种非线性降维技术,能够在保持局部结构的同时,将高维数据嵌入到低维空间,适合数据的可视化和聚类分析 |
表2 AI在数据挖掘中的应用
Tab. 2 Applications of AI in data mining
应用方面 | 方法 | 方法描述 |
---|---|---|
特征选择 | 包裹法 | 使用特定的机器学习算法(如递归特征消除)评估特征的重要性 |
嵌入法 | 在模型训练过程中自动进行特征选择,如Lasso回归和树模型中的特征重要性评分 | |
特征工程 | 特征组合 | 将多个特征进行交叉、相乘或其他组合操作,生成新的特征,如交叉特征、交互特征 |
特征生成 | 通过聚类、自动编码器等方法,从原始数据中生成新的、更具代表性的特征 | |
特征降维 | 主成分分析 | 将原始特征投影到一个低维空间,保留数据的主要信息,通过主成分提取数据的主要变异,减少特征数量 |
线性判别分析 | 寻找能够最大化类间方差与类内方差比值的特征组合,常用于分类任务,通过线性变换找到能区分不同类别的特征组合 | |
t-SNE和UMAP | 适用于高维数据的可视化和降维。t-SNE和UMAP是2种非线性降维技术,能够在保持局部结构的同时,将高维数据嵌入到低维空间,适合数据的可视化和聚类分析 |
来源 | 年份 | 配置 | 电解槽规模 | 调度方法 | 产氢量 | 优势 |
---|---|---|---|---|---|---|
文献[ | 2024 | PV-AWE | 20 MW | 基于光伏出力预测的多目标滚动算法 | 半年产氢4 952 642 m3,相较于简单启停和轮值法分别提高5.37%和9.00% | 电解槽开关次数大幅减少,提高系统经济性和电解槽寿命 |
文献[ | 2024 | PV-AWE+PEMWE | 0.3 MW | 考虑电解槽特性的制氢效率提升策略 | 相较常规启停模式制氢总量提升9.2% | 实现功率阵列间的合理分配以及效率的最大化利用 |
文献[ | 2024 | Wind-AWE | 42 MW | 改进滚动优化算法 | 年产氢2 539 t,产氢效率相较常规启停和循环轮转法分别提升2.31%和1.65% | 提高系统整体效率、运营成本效益和制氢的可持续性 |
文献[ | 2024 | Wind+PV-AWE+PEMWE | 20 MW | 基于风光出力预测的最优调度方法 | 一季度产氢318.5 t,相较于简单启停和轮值法分别提高4.49%和4.47% | 合理地规划了电解槽运行数量,提高系统效率和能源利用率 |
文献[ | 2024 | PV-AWE+PEMWE | 20 MW | 多目标滚动优化控制 | 相较于常规启停和阵列轮值法分别提高5.36%和4.13% | 减少电解槽的启停次数,延长使用寿命并提升风氢系统的经济性 |
文献[ | 2023 | Wind-AWE | 4 MW | 基于功率优化器的滚动优化策略 | 年产氢311.3 t,系统效率相较于简单启停和轮值法分别提高4.1%和2.6% | 提高系统效率,降低制氢成本;负载水平均衡,温度变化更稳定 |
表3 电解槽优化调度方法数据统计
Tab. 3 Data statistics of optimization scheduling methods for electrolyzers
来源 | 年份 | 配置 | 电解槽规模 | 调度方法 | 产氢量 | 优势 |
---|---|---|---|---|---|---|
文献[ | 2024 | PV-AWE | 20 MW | 基于光伏出力预测的多目标滚动算法 | 半年产氢4 952 642 m3,相较于简单启停和轮值法分别提高5.37%和9.00% | 电解槽开关次数大幅减少,提高系统经济性和电解槽寿命 |
文献[ | 2024 | PV-AWE+PEMWE | 0.3 MW | 考虑电解槽特性的制氢效率提升策略 | 相较常规启停模式制氢总量提升9.2% | 实现功率阵列间的合理分配以及效率的最大化利用 |
文献[ | 2024 | Wind-AWE | 42 MW | 改进滚动优化算法 | 年产氢2 539 t,产氢效率相较常规启停和循环轮转法分别提升2.31%和1.65% | 提高系统整体效率、运营成本效益和制氢的可持续性 |
文献[ | 2024 | Wind+PV-AWE+PEMWE | 20 MW | 基于风光出力预测的最优调度方法 | 一季度产氢318.5 t,相较于简单启停和轮值法分别提高4.49%和4.47% | 合理地规划了电解槽运行数量,提高系统效率和能源利用率 |
文献[ | 2024 | PV-AWE+PEMWE | 20 MW | 多目标滚动优化控制 | 相较于常规启停和阵列轮值法分别提高5.36%和4.13% | 减少电解槽的启停次数,延长使用寿命并提升风氢系统的经济性 |
文献[ | 2023 | Wind-AWE | 4 MW | 基于功率优化器的滚动优化策略 | 年产氢311.3 t,系统效率相较于简单启停和轮值法分别提高4.1%和2.6% | 提高系统效率,降低制氢成本;负载水平均衡,温度变化更稳定 |
图2 AI在可再生能源电解水制氢中的应用及各技术之间的关联
Fig. 2 Applications of AI in renewable energy-powered water electrolysis for hydrogen production and interrelations between technologies
1 | 冀肖彤,杨东俊,方仍存,等 .“双碳”目标下未来配电网构建思考与展望[J].电力建设,2024,45(2):37-48. |
JI X T, YANG D J, FANG R C,et al .Research and prospect of future distribution network construction under “dual carbon” target[J].Electric Power Construction,2024,45(2):37-48. | |
2 | 任晨星,任清洁,高翔 .“双碳”背景下我国低碳电力发展研究[J].热力发电,2024,53(2):1-7. |
REN C X, REN Q J, GAO X .Research on low-carbon electric power development in China under “carbon neutralization and carbon peak” background[J].Thermal Power Generation,2024,53(2):1-7. | |
3 | 张春雁,窦真兰,王俊,等 .电解水制氢-储氢-供氢在电力系统中的发展路线[J].发电技术,2023,44(3):305-317. |
ZHANG C Y, DOU Z L, WANG J,et al .Development route of hydrogen production by water electrolysis,hydrogen storage and hydrogen supply in power system[J].Power Generation Technology,2023,44(3):305-317. | |
4 | CHEN L, GAO L Y, XING S P,et al .Zero-carbon microgrid:real-world cases,trends,challenges, and future research prospects[J].Renewable and Sustainable Energy Reviews,2024,203:114720. doi:10.1016/j.rser.2024.114720 |
5 | 邱一苇,朱杰,曾扬俊,等 .离网型可再生能源发电制氢能量管理技术需求分析与展望[J].电力系统自动化,2024,48(22):43-59. |
QIU Y W, ZHU J, ZENG Y J,et al .Technological requirement analysis and prospect of energy management for off-grid renewable power-to-hydrogen systems[J].Automation of Electric Power Systems,2024,48(22):43-59. | |
6 | 李彬,潘雨情,文华杰,等 .基于碳减排的氢电资源耦合发展现状及展望[J].供用电,2023,40(10):106-113. |
LI B, PAN Y Q, WEN H J,et al .Current status and prospects of hydrogen electricity resource coupling development based on carbon emission reduction[J].Distribution & Utilization,2023,40(10):106-113. | |
7 | 袁铁江,张一瑾,杨紫娟,等 .基于系统动力学的氢需求量中长期预测[J].中国电力,2023,56(10):11-21. |
YUAN T J, ZHANG Y J, YANG Z J,et al .Medium and long-term hydrogen load prediction based on system dynamics[J].Electric Power,2023,56(10):11-21. | |
8 | 潘光胜,顾钟凡,罗恩博,等 .新型电力系统背景下的电制氢技术分析与展望[J].电力系统自动化,2023,47(10):1-13. |
PAN G S, GU Z F, LUO E B,et al .Analysis and prospect of electrolytic hydrogen technology under background of new power systems[J].Automation of Electric Power Systems,2023,47(10):1-13. | |
9 | XIE R, SUN J, SHI Y,et al .Baffled-type thermochemical reactor for high-efficient hydrogen production by methanol steam reforming[J].International Journal of Hydrogen Energy,2023,48(61):23425-23439. doi:10.1016/j.ijhydene.2023.03.166 |
10 | 滕越,赵骞,袁铁江,等 .绿电-氢能-多域应用耦合网络关键技术现状及展望[J].发电技术,2023,44(3):318-330. |
TENG Y, ZHAO Q, YUAN T J,et al .Key technology status and outlook for green electricity-hydrogen energy-multi-domain applications coupled network[J].Power Generation Technology,2023,44(3):318-330. | |
11 | 张轩,王凯,樊昕晔,等 .电解水制氢成本分析[J].现代化工,2021,41(12):7-11. |
ZHANG X, WANG K, FAN X Y,et al .Cost analysis on hydrogen production via water electrolysis[J].Modern Chemical Industry,2021,41(12):7-11. | |
12 | 王明华 .新能源电解水制氢技术经济性分析[J].现代化工,2023,43(5):1-5. |
WANG M H .Technical economic analysis on hydrogen production from water electrolysis by new energy[J].Modern Chemical Industry,2023,43(5):1-5. | |
13 | 商伟情 .多场景风光耦合制氢系统优化配置研究[D].徐州:中国矿业大学,2023. |
SHANG W Q .Research on multi-scene wind-photovoltaic coupling hydrogen production system.Xuzhou:China University of Mining and Technology,2023. | |
14 | GAO F Y, YU P C, GAO M R .Seawater electrolysis technologies for green hydrogen production:challenges and opportunities[J].Current Opinion in Chemical Engineering,2022,36:100827. doi:10.1016/j.coche.2022.100827 |
15 | AZIZIMEHR B, ARMAGHANI T, GHASEMIASL R,et al .A comprehensive review of recent developments in hydrogen production methods using a new parameter[J].International Journal of Hydrogen Energy,2024,72:716-729. doi:10.1016/j.ijhydene.2024.05.219 |
16 | AKYÜZ E S, TELLI E, FARSAK M .Hydrogen generation electrolyzers:Paving the way for sustainable energy[J].International Journal of Hydrogen Energy,2024,81:1338-1362. doi:10.1016/j.ijhydene.2024.07.175 |
17 | YANG B, ZHANG Z, LI J,et al .Efficient multi-objective rolling strategy of photovoltaic/hydrogen system via short-term photovoltaic power forecasting[J].International Journal of Hydrogen Energy,2024,80:1339-1355. doi:10.1016/j.ijhydene.2024.07.149 |
18 | UKWUOMA C C, CAI D, JONATHAN A L,et al .Enhancing hydrogen production prediction from biomass gasification via data augmentation and explainable AI:a comparative analysis[J].International Journal of Hydrogen Energy,2024,68:755-776. doi:10.1016/j.ijhydene.2024.04.283 |
19 | 杨博,陈义军,姚伟,等 .基于新一代人工智能技术的电力系统稳定评估与决策综述[J].电力系统自动化,2022,46(22):200-223. |
YANG B, CHEN Y J, YAO W,et al .Review on stability assessment and decision for power systems based on new-generation artificial intelligence technology[J].Automation of Electric Power Systems,2022,46(22):200-223. | |
20 | NASSER M, MEGAHED T F, OOKAWARA S,et al .A review of water electrolysis-based systems for hydrogen production using hybrid/solar/wind energy systems[J].Environmental Science and Pollution Research International,2022,29(58):86994-87018. doi:10.1007/s11356-022-23323-y |
21 | 张海龙 .碱性水电解制氢装置模型研究综述[J].太阳能,2024(5):34-41. doi:10.1201/9781003368939-5 |
ZHANG H L .A review of model research on alkaline water electrolysis hydrogen production equipment[J].Solar Energy,2024(5):34-41. doi:10.1201/9781003368939-5 | |
22 | 宋洁,郜捷,梁丹曦,等 .质子交换膜电解制氢系统建模研究综述[J].电力建设,2024,45(2):58-78. |
SONG J, GAO J, LIANG D X,et al .A review on modeling of hydrogen production system with proton exchange membrane electrolysis[J].Electric Power Construction,2024,45(2):58-78. | |
23 | 胡轶坤,曹军文,张文强,等 .高温固体氧化物电解池应用研究进展[J].发电技术,2023,44(3):361-372. |
HU Y K, CAO J W, ZHANG W Q,et al .Application research progress of high temperature solid oxide electrolysis cell[J].Power Generation Technology,2023,44(3):361-372. | |
24 | CARBONI N, MAZZAPIODA L, CAPRÌ A,et al .Composite anion exchange membranes based on graphene oxide for water electrolyzer applications[J].Electrochimica Acta,2024,486:144090. doi:10.1016/j.electacta.2024.144090 |
25 | SCHROPP E, CAMPOS-CARRIEDO F, IRIBARREN D,et al .Environmental and material criticality assessment of hydrogen production via anion exchange membrane electrolysis[J].Applied Energy,2024,356:122247. doi:10.1016/j.apenergy.2023.122247 |
26 | IKUEROWO T, BADE S O, AKINMOLADUN A,et al .The integration of wind and solar power to water electrolyzer for green hydrogen production[J].International Journal of Hydrogen Energy,2024,76:75-96. doi:10.1016/j.ijhydene.2024.02.139 |
27 | WANG J, WEN J, WANG J,et al .Water electrolyzer operation scheduling for green hydrogen production:a review[J].Renewable and Sustainable Energy Reviews,2024,203:114779. doi:10.1016/j.rser.2024.114779 |
28 | 孙浩,吴维宁,陈丽杰,等 .新能源电解水制氢技术发展研究综述[J/OL].电源学报,2024:1-18.(2024-01-24).. |
SUN H, WU W N, CHEN L J,et al .Review on the development of new energy electrolytic water hydrogen production technology[J/OL].Journal of Power Supply,2024:1-18.(2024-01-24).. | |
29 | 陈颖 .电解水制氢技术的研究现状及未来发展趋势[J].太阳能,2024(1):5-11. |
CHEN Y .Research status and future development trend of hydrogen production by water electrolysis[J].Solar Energy,2024(1):5-11. | |
30 | 张显峰,唐乾,刘伟,等 .PEM电解制氢技术问题及现状分析[J].山东化工,2024,53(4):105-109. |
ZHANG X F, TANG Q, LIU W,et al .Technical problems and current situation analysis of PEM electrolysis hydrogen production[J].Shandong Chemical Industry,2024,53(4):105-109. | |
31 | 高岩,吴汉斌,张纪欣,等 .基于组合深度学习的光伏功率日前概率预测模型[J].中国电力,2024,57(4):100-110. |
GAO Y, WU H B, ZHANG J X,et al .Day-ahead probabilistic prediction model for photovoltaic power based on combined deep learning[J].Electric Power,2024,57(4):100-110. | |
32 | 苏向敬,宇海波,符杨,等 .基于DALSTM和联合分位数损失的海上风电功率概率预测[J].中国电力,2023,56(11):10-19. |
SU X J, YU H B, FU Y,et al .Probabilistic forecasting of offshore wind power based on dual-stage attentional LSTM and joint quantile loss function[J].Electric Power,2023,56(11):10-19. | |
33 | 陈晓华,吴杰康,蔡锦健,等 .基于猎人猎物优化算法优化BiLSTM的电力负荷短期预测[J].山东电力技术,2024,51(4):64-71. |
CHEN X H, WU J K, CAI J J,et al .Short-term load prediction based on BiLSTM optimized by hunter-prey optimization algorithm[J].Shandong Electric Power,2024,51(4):64-71. | |
34 | 匡洪海,郭茜 .基于多特征提取-卷积神经网络-长短期记忆网络的短期风电功率预测方法[J].发电技术,2025,46(1):93-102. |
KUANG H H, GUO Q .Short-term wind power prediction method based on multimodal feature extraction-convolutional neural network-long-short term memory network[J].Power Generation Technology,2025,46(1):93-102. | |
35 | 徐昊,王永生,许志伟,等 .基于生成对抗网络多变量风电时间序列异常值处理[J].太阳能学报,2022,43(12):300-311. |
XU H, WANG Y S, XU Z W,et al .Outlier processing of multivariable wind power time series based on generative adversarial network[J].Acta Energiae Solaris Sinica,2022,43(12):300-311. | |
36 | 杨哲 .基于GAN的智能气象网关数据补全技术研究[D].上海:华东师范大学,2022. |
YANG Z .Research on data imputation technology of intelligent meteorological gateway based on GAN[D].Shanghai:East China Normal University,2022. | |
37 | 陈磊,黄凯阳,张怡,等 .基于信息重组和TCN-LSTM-MHSA的超短期风电功率预测[J/OL].南方电网技术,2024:1-10.(2024-06-27).. |
CHEN L, HUANG K Y, ZHANG Y,et al .Ultra-Short-Term Wind Power Forecasting Based on Information Recombination and TCN-LSTM-MHSA[J/OL].Southern Power System Technology,2024:1-10.(2024-06-27).. | |
38 | 杨胜,樊艳芳,侯俊杰,等 .考虑平抑风光波动的ALK-PEM电解制氢系统容量优化模型[J].电力系统保护与控制,2024,52(1):85-96. |
YANG S, FAN Y F, HOU J J,et al .Capacity optimization model for an ALK-PEM electrolytic hydrogen production system considering the stabilization of wind and PV fluctuations[J].Power System Protection and Control,2024,52(1):85-96. | |
39 | 万永江,韩爽,闫亚敏,等 .风光制氢容量配置优化研究及绿氢经济性分析[J].内蒙古电力技术,2023,41(1):8-14. |
WAN Y J, HAN S, YAN Y M,et al .Research on optimization of capacity allocation of wind power and photovoltaic hydrogen production and economic analysis of green hydrogen[J].Inner Mongolia Electric Power,2023,41(1):8-14. | |
40 | 韩子娇,李宠,苑舜,等 .风电制氢混合储能系统容量优化配置研究[J].东北电力技术,2022,43(10):56-62. |
HAN Z J, LI C, YUAN S,et al .Research on optimal allocation of hybrid energy storage system capacity for wind power hydrogen production[J].Northeast Electric Power Technology,2022,43(10):56-62. | |
41 | 年珩,陈磊磊,赵建勇,等 .基于电解槽状态识别的风光制氢系统能量管理优化[J].电测与仪表,2023,60(10):10-16. |
NIAN H, CHEN L L, ZHAO J Y,et al .Energy management optimization of wind-solar hydrogen production system based on electrolytic cell state recognition[J].Electrical Measurement & Instrumentation,2023,60(10):10-16. | |
42 | 李建林,赵文鼎,梁忠豪,等 .基于混合电解槽制氢系统的功率分配技术[J].电力系统自动化,2024,48(13):9-18. |
LI J L, ZHAO W D, LIANG Z H,et al .Power distribution technology based on hybrid-electrolyzer hydrogen production system[J].Automation of Electric Power Systems,2024,48(13):9-18. | |
43 | WANG J, WEN J, WANG J,et al .Coordinated scheduling of wind-solar-hydrogen-battery storage system for techno-economic-environmental optimization of hydrogen production[J].Energy Conversion and Management,2024,314:118695. doi:10.1016/j.enconman.2024.118695 |
44 | YANG B, ZHANG Z, SU S,et al .Optimal scheduling of wind-photovoltaic-hydrogen system with alkaline and proton exchange membrane electrolyzer[J].Journal of Power Sources,2024,614:235010. doi:10.1016/j.jpowsour.2024.235010 |
45 | 梁涛,刘伟,曹欣,等 .基于深度确定性策略梯度算法的可再生能源大规模制氢系统能量调度[J/OL].电网技术,1-16.[2024-07-29]. . |
LIANG T, LIU W, CAO X,et al .Research on energy scheduling of renewable energy large-scale hydrogen production system based on deep deterministic strategy gradient algorithm[J/OL].Power System Technology,1-16.[2024-07-29]. . | |
46 | 王加荣,杨博,张芮,等 .基于风电预测的碱性电解槽系统优化控制[J].电网技术,2024,48(7):2940-2947. |
WANG J R, YANG B, ZHANG R,et al .Optimization control of alkaline electrolyzer system based on wind power prediction[J].Power System Technology,2024,48(7):2940-2947. | |
47 | 梁涛,孙博峰,刘伟,等 .可再生能源制氢系统多目标优化调度[J].科学技术与工程,2023,23(1):226-235. |
LIANG T, SUN B F, LIU W,et al .Multi-objective optimal scheduling of renewable energy hydrogen production system[J].Science Technology and Engineering,2023,23(1):226-235. | |
48 | ZHENG Y, HUANG C, TAN J,et al .Off-grid wind/hydrogen systems with multi-electrolyzers:optimized operational strategies[J].Energy Conversion and Management,2023,295:117622. doi:10.1016/j.enconman.2023.117622 |
49 | KHEIRROUZ M, MELINO F, ANCONA M A .Fault detection and diagnosis methods for green hydrogen production:a review[J].International Journal of Hydrogen Energy,2022,47(65):27747-27774. doi:10.1016/j.ijhydene.2022.06.115 |
50 | ZHANG Q, XU W, XIE L,et al .Dynamic fault detection and diagnosis for alkaline water electrolyzer with variational Bayesian Sparse principal component analysis[J].Journal of Process Control,2024,135:103173. doi:10.1016/j.jprocont.2024.103173 |
51 | BALYOGI M, BELKCEM O, KOMI M,et al .Prior knowledge-infused self-supervised learning and explainable AI for fault detection and isolation in PEM electrolyzers[J].Neurocomputing,2024,594:127871. doi:10.1016/j.neucom.2024.127871 |
52 | ZHAO T, FENG S, ZHOU Y,et al .Data-driven fault detection framework for offshore wind-hydrogen systems[J].International Journal of Hydrogen Energy,2024,70:325-340. doi:10.1016/j.ijhydene.2024.05.029 |
53 | ZHANG Q, LU S, XIE L,et al .Dynamic fault detection and diagnosis of industrial alkaline water electrolyzer process with variational Bayesian dictionary learning[J].International Journal of Hydrogen Energy,2024,71:1492-1506. doi:10.1016/j.ijhydene.2023.03.373 |
54 | JUÁREZ-CASILDO V, CERVANTES I, DE G GONZÁLEZ-HUERTA R .Harnessing offshore wind for decarbonization:a geospatial study of hydrogen production and heavy industry utilization in Mexico[J].International Journal of Hydrogen Energy,2024,83:701-716. doi:10.1016/j.ijhydene.2024.08.142 |
55 | 张春晖,肖楠,苏佩东,等 .氢能、碳减排与可持续发展[J].能源与环保,2023,45(7):1-9. |
ZHANG C H, XIAO N, SU P D,et al .Hydrogen energy,carbon emission reduction and sustainable development[J].China Energy and Environmental Protection,2023,45(7):1-9. | |
56 | SIRAT A, AHMAD S, AHMAD I,et al .Integrative CFD and AI/ML-based modeling for enhanced alkaline water electrolysis cell performance for hydrogen production[J].International Journal of Hydrogen Energy,2024,83:1120-1131. doi:10.1016/j.ijhydene.2024.08.184 |
57 | GHAEBI PANAH P, CUI X, BORNAPOUR M,et al .Marketability analysis of green hydrogen production in Denmark:scale-up effects on grid-connected electrolysis[J].International Journal of Hydrogen Energy,2022,47(25):12443-12455. doi:10.1016/j.ijhydene.2022.01.254 |
58 | KOUROUGIANNI F, ARSALIS A, OLYMPIOS A V,et al .A comprehensive review of green hydrogen energy systems[J].Renewable Energy,2024,231:120911. doi:10.1016/j.renene.2024.120911 |
59 | 付强,杨洸,金辉,等 .中国氢能产业链技术现状及发展趋势[J].油气与新能源,2024,36(4):19-30. |
FU Q, YANG G, JIN H,et al .Technical status and development trends of hydrogen energy industry chain technology in China[J].Petroleum and New Energy,2024,36(4):19-30. | |
60 | 刘赫 .德国加快推动氢能产业发展[N].人民日报,2024-08-12(16). |
LIU H .Germany accelerates the development of hydrogen energy industry[N].People’s Daily,2024-08-12(16). | |
61 | LI G, WU L, QIN Y,et al .Gradient catalyst layer design towards current density homogenization in PEM water electrolyzer with serpentine flow field[J].Energy Conversion and Management,2024,314:118659. doi:10.1016/j.enconman.2024.118659 |
62 | ZHANG S, LI X, YANG Y,et al .Microporous and low swelling branched poly(aryl piperidinium) anion exchange membranes for high-performed water electrolyzers[J].Journal of Membrane Science,2024,698:122587. doi:10.1016/j.memsci.2024.122587 |
63 | 陈向春 .浅谈“双碳”战略目标下我国氢能标准化的发展[J].标准科学,2022(10):36-41. |
CHEN X C .Brief discussion on the development of hydrogen energy standardization in the context of “dual carbon” strategic goal[J].Standard Science,2022(10):36-41. | |
64 | 徐立军,苏昕,朱迪,等 .“双碳”目标下氢能产业技术发展分析[J].新疆大学学报(自然科学版中英文),2024,41(4):385-407. |
XU L J, SU X, ZHU D,et al .Analysis of the technological development of the hydrogen energy industry in the context of “dual carbon” targets[J].Journal of Xinjiang University (Natural Science Edition in Chinese and English),2024,41(4):385-407. | |
65 | 吉平,林伟芳,冯长有,等 .氢能发电技术发展制约因素及未来方向综述[J].全球能源互联网,2025,8(2):165-175. |
JI P, LIN W F, FENG C Y,et al .Review on the development constraints and directions of hydrogen power generation technology[J].Journal of Global Energy Interconnection,2025,8(2):165-175. | |
66 | 邵乐,张益,唐燕飞,等 .煤制氢、天然气制氢及绿电制氢经济性分析[J].炼油与化工,2024,35(2):10-14. |
SHAO L, ZHANG Y, TANG Y F,et al .Economic analysis of hydrogen production from coal,natural gas and green electricity[J].Refining and Chemical Industry,2024,35(2):10-14. |
[1] | 张俊, 蒲天骄, 高文忠, 刘友波, 裴玮, 许沛东, 高天露, 白昱阳. 电力系统智能计算的关键技术及应用展望[J]. 发电技术, 2025, 46(3): 421-437. |
[2] | 张祖菡, 刘敦楠, 凡航, 杨柳青, 段赟杰, 李赟, 马振宇. 基于大语言模型的电力系统预测技术研究综述[J]. 发电技术, 2025, 46(3): 438-453. |
[3] | 徐浩然, 张瑾昀, 马歆, 雷文强, 曹杰铭. 基于大语言模型的图检索增强生成技术在核电领域的应用与展望[J]. 发电技术, 2025, 46(3): 454-466. |
[4] | 陈艺璇, 王嘉阳, 卓映君, 卢斯煜, 周保荣. 人工智能在电力系统运行模拟加速中的应用综述[J]. 发电技术, 2025, 46(3): 467-481. |
[5] | 侯朗博, 孙昊, 陈衡, 高悦. 基于需求响应与Stackelberg博弈的小区综合能源系统优化调度[J]. 发电技术, 2025, 46(2): 219-230. |
[6] | 张立栋, 杨智翔, 李文锋, 冯江哲, 张博, 任淮辉, 陈哲, 王兆新. 导流板对水平轴风力机气动特性影响的数值模拟研究[J]. 发电技术, 2025, 46(2): 336-343. |
[7] | 胡山鹰, 金涌, 张臻烨. 发展新质生产力,实现碳中和[J]. 发电技术, 2025, 46(1): 1-8. |
[8] | 刘忠, 周泽华, 邹淑云, 刘圳, 乔帅程. 基于知识蒸馏-卷积神经网络的水轮机空化状态识别方法[J]. 发电技术, 2025, 46(1): 161-170. |
[9] | 兰国芹, 陆烨, 阚严生, 张继广, 王欢欢, 钟芳, 王承才, 肖黎明, 王照阳. 综合能源服务发展趋势与对策研究[J]. 发电技术, 2025, 46(1): 19-30. |
[10] | 杨琛, 牛锋杰, 韩茂林, 周宁, 周定璇. 基于改进灰狼算法优化极限学习机的光伏阵列故障诊断方法研究[J]. 发电技术, 2025, 46(1): 72-82. |
[11] | 刘展, 刘健洵, 包琰洋, 李大字. 基于图正则化堆叠自编码器的风机轴承故障诊断方法[J]. 发电技术, 2024, 45(6): 1146-1152. |
[12] | 张立栋, 铁浩, 刘惠文, 李钦伟, 田文鑫, 赵秀勇, 常子涵. 风力机偏航对尾迹演化影响的实验研究[J]. 发电技术, 2024, 45(6): 1153-1162. |
[13] | 李文, 卜凡鹏, 张潇桐, 杨创东, 张静. 基于典型商业运营模式的含电-氢混合储能微电网系统优化运行方法[J]. 发电技术, 2024, 45(6): 1186-1200. |
[14] | 吴任博, 黄奕俊. 高比例可再生能源接入下含自愈性能的分布式配电网重构策略研究[J]. 发电技术, 2024, 45(5): 975-982. |
[15] | 王伟杰, 曾鑫洁, 徐远途, 李书仪, 阮灿华, 童宁, 武小梅. 基于正序突变量相轨迹辨识的可再生能源配电网电流保护[J]. 发电技术, 2024, 45(4): 753-764. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||