发电技术 ›› 2025, Vol. 46 ›› Issue (2): 219-230.DOI: 10.12096/j.2096-4528.pgt.24144

• 基于群体智能的综合能源系统建模仿真及优化运行 • 上一篇    

基于需求响应与Stackelberg博弈的小区综合能源系统优化调度

侯朗博, 孙昊, 陈衡, 高悦   

  1. 华北电力大学能源动力与机械工程学院,北京市 昌平区102206
  • 收稿日期:2024-07-12 修回日期:2024-10-27 出版日期:2025-04-30 发布日期:2025-04-23
  • 作者简介:侯朗博(1999),男,硕士研究生,主要研究方向为电网提质增效,houlangbo1@163.com
    孙昊(2000),男,硕士研究生,主要研究方向为综合能源系统,1284683704@qq.com
    陈衡(1989),男,博士,副教授,主要研究方向为电网提质增效,本文通信作者,heng@ncepu.edu.cn
    高悦(2000),男,硕士研究生,主要研究方向为输变电技术,gy15602073072@163.com
  • 基金资助:
    国家自然科学基金项目(52276006)

Optimization Scheduling of Integrated Energy Systems in Communities Based on Demand Response and Stackelberg Game

Langbo HOU, Hao SUN, Heng CHEN, Yue GAO   

  1. School of Energy, Power and Mechanical Engineering, North China Electric Power University, Changping District, Beijing 102206, China
  • Received:2024-07-12 Revised:2024-10-27 Published:2025-04-30 Online:2025-04-23
  • Supported by:
    National Natural Science Foundation of China(52276006)

摘要:

目的 随着需求侧响应资源的不断增长,传统的能源调度模式难以满足新能源大量接入的系统需求。为实现小区内多种能源的合理调配,提出了一种基于用户需求侧响应的能源交易策略,旨在优化智能小区内能源的调度。 方法 针对含多栋楼宇的居民小区,对其中的分布式光伏、储能设备和柔性负荷进行统一调配,并根据小区运营商和用户负荷聚合商的定价交互,采用Stackelberg博弈建立两阶段调度优化模型。 结果 算例仿真模拟结果显示,相比传统的以热定电策略,所提模型可以降低40.22%的运行成本,提高22.57%的光伏消纳水平;相比传统的最优运行成本策略,所提模型可以降低29.66%的运行成本,提高6.78%的光伏消纳水平。 结论 所设计的策略在实现公平利益分配、缓解电力波动、灵活应对调度高峰需求、加强新能源整合及确保电网运行安全方面具有良好效果。

关键词: 可再生能源, 综合能源系统, 需求侧响应, Stackelberg博弈, 能源交易, 调度策略, 智能小区, 功率互济

Abstract:

Objectives With the continuous growth of demand-side response resources, traditional energy scheduling models struggle to meet the system requirements of high penetration levels of renewable energy. To achieve the rational allocation of multiple energy sources within a community, this study proposes an energy trading strategy based on demand-side response from users, aiming to optimize energy scheduling in smart community. Methods For a residential community with multiple buildings, this study coordinates distributed photovoltaics, energy storage systems, and flexible loads. A two-stage scheduling optimization model is established using the Stackelberg game framework based on pricing interactions between community operators and user load aggregators. Results Simulation results show that, compared to the traditional heat-determined power strategy, the proposed model reduces operational costs by 40.22% and increases photovoltaic utilization by 22.57%. Compared to the conventional cost-optimal operation strategy, the proposed model results in a 29.66% reduction in operational costs and a 6.78% increase in photovoltaic utilization. Conclusions The proposed strategy demonstrates excellent performance in achieving equitable benefit distribution, mitigating power fluctuations, flexibly meeting peak-load demands, enhancing renewable energy integration, and ensuring grid operational security.

Key words: renewable energy, integrated energy system, demand-side response, Stackelberg game, energy trading, scheduling strategy, smart community, power mutual support

中图分类号: