发电技术

• •    下一篇

基于分层双深度Q网络的主动配电网等值建模

王臣1,卢建刚1,郭文鑫1,赵瑞锋1,谭慧娟1,王子怡2,郑杰辉2*,吴青华2   

  1. 1.广东电网有限责任公司电力调度控制中心,广东省广州市510000; 2.华南理工大学电力学院,广东省广州市510641
  • 基金资助:
    国家自然科学基金项目(52477097);广东省科技计划项目(030000KC23040071)

Active Distribution Network Equivalent Modeling Based on Hierarchical Double Deep Q Network

WANGChen1, LU Jiangang1, GUO Wenxin1, ZHAO Ruifeng1, TAN Huijuan1, WANGZiyi2, ZHENG Jiehui2*, WU Qinghua2   

  1. 1. Guangdong Power Grid Co., Ltd. Power Dispatching Control Center, Guangzhou 510000, Guangdong Province, China; 2. School of Electric Power, South China University of Technology, Guangzhou 510641, Guangdong Province, China
  • Supported by:
    National Natural Science Foundation of China (52477097); Guangdong Science and Technology Programme (030000KC23040071)

摘要: 【目的】随着分布式新能源和柔性负荷的广泛应用,主动配电网(active distribution network,ADN)与主干电网之间的电力交互复杂性显著增加。传统的负荷模型通常依赖于给定的结构和参数,无法适应负荷的时变性和随机性。为此,提出一种基于分层双深度Q网络(hierarchicaldouble deep Q network,HDDQN)的 ADN 动态等值建模方法。【方法】首先通过多个动态和静态负荷模型对ADN进行初步建模,然后将等值任务抽象为两阶段三层的马尔可夫决策过程,最后结合HDDQN算法实现参数的在线辨识。HDDQN算法采用门控循环单元对输入的离散时序数据进行特征提取,并引入竞争型网络和优先经验回放机制对传统强化学习算法进行了优化。【结果】所提方法经过充分训练后仅需2.8s即可生成策略,同时其有功功率和无功功率的平均等值精度分别是传统方法的2.64倍和9.10倍。【结论】所提方法可在线辨识等值模型参数,且收敛性能和等值精度显著优于传统方法,对提高ADN实时建模的效率和准确度具有重要意义。

关键词: 主动配电网(ADN), 新能源, 分布式电源, 柔性负荷, 等值建模, 参数辨识, 深度强化学习, 分层决策

Abstract: [Objectives] With the widespread adoption of distributed new energy sources and flexible loads, the complexity of power interactions between the active distribution network (ADN) and the backbone grid has increased significantly. Traditional load models usually rely on given structures and parameters, which cannot adapt to the time-varying and stochastic nature of loads. Therefore, a dynamic equivalence modeling method based on hierarchical double deep Q network (HDDQN) for ADN is proposed. [Methods] This paper first performs preliminary modeling of ADN through multiple dynamic and static load models, then abstracts the corresponding task into a two-stage, three-layer Markov decision process, and finally combines it with the HDDQN algorithm to achieve online identification of parameters. The HDDQN algorithm employs gated recurrent units to perform feature extraction on the input discrete time series data, and introduces a competitive network and a prioritized empirical replay mechanism to optimize the traditional reinforcement learning algorithm is optimized. [Results] The proposed method can generate strategies in only 2.8 s after being well-trained, with its average active and reactive power calculation accuracy 2.64 times and 9.10 times that of the traditional methods, respectively. [Conclusions]The proposed HDDQN algorithm can identify the equivalent model parameters online, and the convergence performance and equivalence accuracy are significantly better than that of traditional methods, which is of great significance to improve the efficiency and accuracy of real-time modelling of ADN.

Key words: active distribution network (ADN), new energy, distributed generation, flexible load, equivalent modeling, parameter identification, deep reinforcement learning, hierarchical decision