发电技术 ›› 2022, Vol. 43 ›› Issue (4): 593-599.DOI: 10.12096/j.2096-4528.pgt.22019
李小端, 赵兴雷, 叶舣, 王保登, 熊日华
收稿日期:
2022-01-25
出版日期:
2022-08-31
发布日期:
2022-09-06
作者简介:
基金资助:
Xiaoduan LI, Xinglei ZHAO, Yi YE, Baodeng WANG, Rihua XIONG
Received:
2022-01-25
Published:
2022-08-31
Online:
2022-09-06
Supported by:
摘要:
针对电渗析法去除热稳定性盐(heat stable salt,HSS)过程的胺损失问题,通过对比二室电渗析、三室电渗析和双极膜电渗析这3种膜堆构型的电渗析设备,在固定实验条件下研究失活胺液再生过程,考察了HSS去除率、再生胺能力、能耗、电流效率等重要性能指标。结果表明,不同的膜堆构型在运行过程有较大差异,且三隔室电渗析性能最优。在保证其他性能的前提下,胺损失率降低为常规电渗析的42.7%。研究结果不仅可以加深对电渗析技术再生有机胺的理解,还可以为吸收剂再生处理技术的使用和推广提供理论支持。
中图分类号:
李小端, 赵兴雷, 叶舣, 王保登, 熊日华. 基于电渗析技术的CO2吸收剂再生过程研究[J]. 发电技术, 2022, 43(4): 593-599.
Xiaoduan LI, Xinglei ZHAO, Yi YE, Baodeng WANG, Rihua XIONG. Study on Reclamation Process of CO2 Absorbent Based on Electrodialysis Technology[J]. Power Generation Technology, 2022, 43(4): 593-599.
项目 | 质量浓度/(mg∙L-1) |
---|---|
MEA | 305 000 |
甲酸 | 8 000 |
乙酸 | 4 000 |
草酸 | 1 500 |
硝酸 | 5 000 |
硫酸 | 4 800 |
盐酸 | 4 300 |
表1 含HSS的吸收剂水质成分
Tab. 1 Absorbent water quality with HSS
项目 | 质量浓度/(mg∙L-1) |
---|---|
MEA | 305 000 |
甲酸 | 8 000 |
乙酸 | 4 000 |
草酸 | 1 500 |
硝酸 | 5 000 |
硫酸 | 4 800 |
盐酸 | 4 300 |
1 | 韩学义 .电力行业二氧化碳捕集、利用与封存现状与展望[J].中国资源综合利用,2020,38(2):8. doi:10.3969/j.issn.1008-9500.2020.02.031 |
HAN X Y .Current situation and prospect of carbon dioxide capture, utilization and storage in electric power industry[J].China Resources Comprehensive Utilization,2020,38(2):8. doi:10.3969/j.issn.1008-9500.2020.02.031 | |
2 | 赵春生,杨君君,王婧,等 .燃煤发电行业低碳发展路径研究[J].发电技术,2021,42(5):547-553. doi:10.12096/j.2096-4528.pgt.21054 |
ZHAO C S, YANG J J, WANG J,et al .Research on low-carbon development path of coal-fired power industry[J].Power Generation Technology,2021,42(5):547-553. doi:10.12096/j.2096-4528.pgt.21054 | |
3 | 吴何来,李汪繁,丁先 .“双碳”目标下我国碳捕集、利用与封存政策分析及建议[J].电力建设,2022,43(4):28-37. doi:10.12204/j.issn.1000-7229.2022.04.004 |
WU H L, LI W F, DING X,et al .Policy analysis and suggestion for carbon capture,utilization and storage under double carbon target in China[J].Electric Power Construction,2022,43(4):28-37. doi:10.12204/j.issn.1000-7229.2022.04.004 | |
4 | 严中华,王建功,朱英刚,等 .考虑碳排放流理论的风-碳捕集-电转气联合新型中长期调度方式[J].智慧电力,2022,50(6):14-21. doi:10.3969/j.issn.1673-7598.2022.06.004 |
YANZ H, WANG J G, ZHU Y G,et al .New medium-long term dispatching mode of wind-carbon capture-P2G combined system considering carbon emission flow theory[J].Smart Power,2021,42(5):547-553. doi:10.3969/j.issn.1673-7598.2022.06.004 | |
5 | 蔡博峰,李琦,张贤,等 .中国二氧化碳捕集利用与封存(CCUS)年度报告(2021):中国CCUS路径研究[R].北京:生态环境部环境规划院,2021. |
CAN B F, LI Q, ZHANG X,et al .Annual report on carbon dioxide capture, utilization and storage in China 2021:Research on CCUS path in China[R].Beijing:Institute of Rock and Soil Mechanics,Chinese Academy of Environmental Planning,2021. | |
6 | DUMEE L, SCHOLES C, STEVENS G,et al. Purification of aqueous amine solvents used in post combustion CO2 capture:a review[J].International Journal of Greenhouse Gas Control,2012,10:443-455. doi:10.1016/j.ijggc.2012.07.005 |
7 | RUBIN E S, MANTRIPRAGADA H, MARKS A,et al .The outlook for improved carbon capture technology[J].Progress in Energy and Combustion Science,2012,38(5):630-671. doi:10.1016/j.pecs.2012.03.003 |
8 | HU G, SMITH K H, YUE W,et al .Carbon dioxide capture by solvent absorption using amino acids:a review[J].Chinese Journal of Chemical Enginee,2018, 26(11):9. doi:10.1016/j.cjche.2018.08.003 |
9 | LUCQUIAUD M, GIBBINS J .On the integration of CO2 capture with coal-fired power plants: a methodology to assess and optimise solvent-based post-combustion capture systems[J].Chemical Engineering Research & Design,2011,89(5):1553-1571. doi:10.1016/j.cherd.2011.03.003 |
10 | REYNOLDS A J, VERHEYEN T V, ADELOJU S B,et al .Monoethanolamine degradation during pilot-scale post-combustion capture of CO2 from a brown coal-fired power station[J].Energy & Fuels,2015,29(11):7441-7455. doi:10.1021/acs.energyfuels.5b00713 |
11 | LING H, LIU S, GAO H X,et al .Effect of heat-stable salts on absorption/desorption performance of aqueous monoethanol-amine (MEA) solution during carbon dioxide capture process[J].Separation and Purification Technology,2019,212:822-833. doi:10.1016/j.seppur.2018.12.001 |
12 | GAO J, WANG S, SUN C,et al .Corrosion behavior of carbon steel at typical positions of an amine-based CO2 capture pilot plant[J].Industrial & Engineering Chemistry Research,2012, 51(19):6714-6721. doi:10.1021/ie203045v |
13 | MATHIEU P .Mitigation of CO2 emissions using low and near zero CO2 emission power plants[J].International Journal of Energy for a Clean Environment,2003,4(1):21-36. doi:10.1615/interjenercleanenv.v4.i1.20 |
14 | LUDOVIC D, COLIN S, GEOFF S,et al .Purification of aqueous amine solvents used in post combustion CO2 capture: a review[J].International Journal of Greenhouse Gas Control,2012,10(1):443-455. doi:10.1016/j.ijggc.2012.07.005 |
15 | YUAN F F, WANG Q, YANG P B,et al .Influence of different resins on the amino acid recovery by resin-filling electrodialysis[J].Separation and Purification Technology,2015,153:51-59. doi:10.1016/j.seppur.2015.08.036 |
16 | 王 俊,张 运,陆克平 .电渗析法连续脱除醇胺溶液中的热稳态盐[J].石油化工,2009,38(10):1076-1080. doi:10.3321/j.issn:1000-8144.2009.10.009 |
WANG J, ZHANG Y, LU K P .Continuous removal of heat stable salts in methyldiethanolamine solution by homogenous membrane electrodialysis[J].Petrochemical Technology,2009,38(10):1076-1080. doi:10.3321/j.issn:1000-8144.2009.10.009 | |
17 | 黄川徽 .双极膜电渗析再生有机胺脱硫剂[D].合肥:中国科学技术大学,2008. |
HUANG C H .Regeneration of amine desulfurizing agents by using electrodialysis with bipolar membranes[D].Hefei:University of Science and Technology of China,2008. | |
18 | BAZHENOV S, VASILEVSKY V, RIEDER A,et al . Heat stable salts(HSS) removal by electrodialysis:reclaiming of MEA used in post-combustion CO2-capture[J].Energy Procedia,2014,63:6349-6356. doi:10.1016/j.egypro.2014.11.668 |
19 | GRUSHEVENKO E A, BAZHENOV S D, VASILEVSKII V P,et al .Two-step electrodialysis treatment of monoethanolamine to remove heat stable salts[J].Russian Journal of Applied Chemistry,2018,91(4):602-610. doi:10.1134/s1070427218040110 |
20 | HUANG C H, XU T W, JACOBS M L .Regenerating flue-gas desulfurizing agents by bipolar membrane electrodialysis[J].Aiche Journal,2006,52(1):393-401. doi:10.1002/aic.10569 |
21 | HUANG C, XU T .Comparative study on the regeneration of flue-gas desulfurizing agents by using conventional electro-dialysis (ED) and bipolar membrane electrodialysis (BMED)[J].Environmental Science & Technology,2006,40(17): 5527-5531. doi:10.1021/es060525c |
22 | HONG M, SHUANG Z, LI C,et al .Removal of heat stable salts from aqueous solutions of N-methyldiethanolamine using a specially designed three-compartment configuration electro-dialyzer[J].Journal of Membrane Science,2008,322(2):436-440. doi:10.1016/j.memsci.2008.05.072 |
23 | WANG Y, LI W, YAN H,et al .Removal of heat stable salts (HSS) from spent alkanolamine wastewater using electrodialysis[J].Journal of Industrial and Engineering Chemistry,2017,57:356-362. doi:10.1016/j.jiec.2017.08.043 |
24 | 张锋镝 .电渗析脱盐过程中胺液损失的因素分析及改进措施[J].气体净化,2019,19(12):40-44. |
ZHANG D F .Factors analysis and improvement measures of amine solution fluid loss during electrodialysis desalination[J].Energy Chemical Industry,2019,19(12):40-44. | |
25 | HONG M, SHUANG Z, LI C,et al .Removal of heat stable salts from aqueous solutions of N-methyldiethanolamine using a specially designed three-compartment configuration electrodialyzer-science direct[J].Journal of Membrane Science,2008,322(2):436-440. doi:10.1016/j.memsci.2008.05.072 |
26 | BURNS D, GREGORY R A .The UCARSEP process for on-line removal of non-regenerable salts from amine units[EB/OL].[2022-01-23](1995-10-13).. |
27 | 沈怡君,汤志刚,陈健,等 .双极膜电渗析法脱除脱碳有机胺中热稳定性盐[J].膜科学与技术,2020,40(3):109-116. |
SHEN Y J, TANG Z G, CHEN J,et al .Research on low-carbon development path of coal-fired power industry[J].Membrane Science and Technology,2020,40(3):109-116. | |
28 | HUANG C, XU T .Comparative study on the regeneration of flue-gas desulfurizing agents by using conventional electrodialysis (ED) and bipolar membrane electrodialysis (BMED)[J].Environmental Science & Technology,2006, 40(17):5527-5531. doi:10.1021/es060525c |
[1] | 孙宇航, 李超, 王争荣, 孙路长, 王凯亮, 胡昔鸣, 方梦祥, 张锋. 甲基二乙醇胺-二元胺混合体系烟气CO2吸收再生性能研究[J]. 发电技术, 2024, 45(3): 468-477. |
[2] | 汪丽, 张欢, 叶舣, 赵兴雷. N-氨乙基哌嗪与甘氨酸钠CO2吸收剂配方研究[J]. 发电技术, 2023, 44(5): 674-684. |
[3] | 翟融融, 魏清, 冯凌杰, 孙舸洵. 耦合膜冷凝器的碳捕集系统能耗特性分析[J]. 发电技术, 2023, 44(5): 667-673. |
[4] | 张宁, 朱昊, 杨凌霄, 胡存刚. 考虑可再生能源消纳的多能互补虚拟电厂优化调度策略[J]. 发电技术, 2023, 44(5): 625-633. |
[5] | 彭道刚, 税纪钧, 王丹豪, 赵慧荣. “双碳”背景下虚拟电厂研究综述[J]. 发电技术, 2023, 44(5): 602-615. |
[6] | 许洪华, 邵桂萍, 鄂春良, 郭金东. 我国未来能源系统及能源转型现实路径研究[J]. 发电技术, 2023, 44(4): 484-491. |
[7] | 兰宇, 龙妍, 张哲豪, 阮金港. 可再生能源制氢跨省供应的技术经济可行性研究[J]. 发电技术, 2023, 44(4): 473-483. |
[8] | 魏少鑫, 金鹰, 王瑾, 杨周飞, 崔超婕, 骞伟中. 电池型电容器技术发展趋势展望[J]. 发电技术, 2022, 43(5): 748-759. |
[9] | 张欢, 汪丽, 叶舣, 赵兴雷. 乙二烯三胺与三乙醇胺混合胺溶液CO2吸收剂研究[J]. 发电技术, 2022, 43(4): 609-617. |
[10] | 苗桢武, 沈来宏, 赵海波. 复合赤铁矿和铜矿石载氧体在化学链燃烧中的循环反应性能研究[J]. 发电技术, 2022, 43(4): 574-583. |
[11] | 徐彬, 薛帅, 高厚磊, 彭放. 海上风电场及其关键技术发展现状与趋势[J]. 发电技术, 2022, 43(2): 227-235. |
[12] | 李雪临, 袁凌. 海上风电制氢技术发展现状与建议[J]. 发电技术, 2022, 43(2): 198-206. |
[13] | 王丹丹, 李亚楼, 李芳, 孙璐. 碳中和背景下高温固体氧化物电解制氢的过程建模与热力学分析[J]. 发电技术, 2021, 42(5): 554-560. |
[14] | 宣文博, 李慧, 刘忠义, 孙业广, 侯恺. 一种基于虚拟电厂技术的城市可再生能源消纳能力提升方法[J]. 发电技术, 2021, 42(3): 289-297. |
[15] | 雷超, 李韬. 碳中和背景下氢能利用关键技术及发展现状[J]. 发电技术, 2021, 42(2): 207-217. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||