发电技术 ›› 2025, Vol. 46 ›› Issue (4): 737-747.DOI: 10.12096/j.2096-4528.pgt.24216
莫基晟1, 尹纯亚1, 黄新民2, 韩璐1, 刘江山1
收稿日期:
2024-10-12
修回日期:
2025-02-05
出版日期:
2025-08-31
发布日期:
2025-08-21
通讯作者:
尹纯亚
作者简介:
基金资助:
Jisheng MO1, Chunya YIN1, Xinmin HUANG2, Lu HAN1, Jiangshan LIU1
Received:
2024-10-12
Revised:
2025-02-05
Published:
2025-08-31
Online:
2025-08-21
Contact:
Chunya YIN
Supported by:
摘要:
目的 针对直流故障后并网点电压大幅度骤升致使风电场面临严重的高电压穿越(high voltage ride-through,HVRT)问题,提出计及保护动作时间协调配合的“有功优先平衡-无功动态补偿”恢复机制。 方法 基于双馈风机的双闭环控制函数,揭示了转子侧变流器无功响应速度优于网侧变流器的动态特性,在减载模式下,提出考虑有功无功协调恢复的风电场HVRT策略。 结果 通过平衡有功功率与无功功率动态补偿,实现了故障期间电压稳定与能量平衡的双重目标。仿真结果表明,该策略可有效抑制暂态过电压风险,提升风电场HVRT能力。 结论 所提策略通过有功-无功协同调控机制,有效破解了高电压穿越过程中系统功率失衡与设备安全运行的矛盾,为含大规模风电的电力系统暂态电压稳定控制提供了新思路。
中图分类号:
莫基晟, 尹纯亚, 黄新民, 韩璐, 刘江山. 考虑有功无功协调恢复的风电场高电压穿越策略[J]. 发电技术, 2025, 46(4): 737-747.
Jisheng MO, Chunya YIN, Xinmin HUANG, Lu HAN, Jiangshan LIU. High Voltage Crossing Strategy of Wind Farm Considering Active and Reactive Coordinated Recovery[J]. Power Generation Technology, 2025, 46(4): 737-747.
分组 | 转速/pu | 整定值/pu |
---|---|---|
0 1 2 | >1.15 | 1.2 |
1.1 | 1.1 | |
1.0 | 1.0 | |
3 4 5 | 0.9 | 0.9 |
0.8 | 0.8 | |
0.7 | 0.7 |
表1 不同转速下风电机组的分组情况
Tab. 1 Group information about wind turbines at different speeds
分组 | 转速/pu | 整定值/pu |
---|---|---|
0 1 2 | >1.15 | 1.2 |
1.1 | 1.1 | |
1.0 | 1.0 | |
3 4 5 | 0.9 | 0.9 |
0.8 | 0.8 | |
0.7 | 0.7 |
部件 | 参数 | 数值 |
---|---|---|
风轮机 | 额定风速/(m/s) | 12 |
叶轮半径/m | 45 | |
发电机 | 额定功率/MW | 2 |
定子额定电压/kV | 0.69 | |
定子电阻/pu | 0.002 5 | |
定子漏抗/pu | 0.082 4 | |
转子电阻/pu | 0.007 6 | |
转子漏抗/pu | 0.098 5 | |
励磁电抗/pu | 2.759 8 | |
基准功率/MW | 10 | |
基准电压/V | 690 |
表2 风电机组的仿真参数
Tab. 2 Parameters to wind turbine simulation
部件 | 参数 | 数值 |
---|---|---|
风轮机 | 额定风速/(m/s) | 12 |
叶轮半径/m | 45 | |
发电机 | 额定功率/MW | 2 |
定子额定电压/kV | 0.69 | |
定子电阻/pu | 0.002 5 | |
定子漏抗/pu | 0.082 4 | |
转子电阻/pu | 0.007 6 | |
转子漏抗/pu | 0.098 5 | |
励磁电抗/pu | 2.759 8 | |
基准功率/MW | 10 | |
基准电压/V | 690 |
风机所处转速/pu | 风机台数 | 单台最大功率/MW | 单台风机减载功率/MW | 减载后转速/pu |
---|---|---|---|---|
0.7 | 5 | 1.42 | 0.37 | 1.12 |
0.8 | 5 | 1.68 | 0.30 | 1.12 |
0.9 | 5 | 1.91 | 0.22 | 1.12 |
1.0 | 3 | 2.00 | 0.15 | 1.12 |
1.1 | 1 | 1.95 | 0.08 | 1.12 |
>1.15 | 1 | 1.78 | 0 |
表3 电压轻度骤升时风电机组转速分布情况及运行状况
Tab. 3 Speed distribution and operating conditions of wind turbines during mild voltage surge
风机所处转速/pu | 风机台数 | 单台最大功率/MW | 单台风机减载功率/MW | 减载后转速/pu |
---|---|---|---|---|
0.7 | 5 | 1.42 | 0.37 | 1.12 |
0.8 | 5 | 1.68 | 0.30 | 1.12 |
0.9 | 5 | 1.91 | 0.22 | 1.12 |
1.0 | 3 | 2.00 | 0.15 | 1.12 |
1.1 | 1 | 1.95 | 0.08 | 1.12 |
>1.15 | 1 | 1.78 | 0 |
类型 | 参数 | 传统控制策略/pu | 本文控制策略/pu |
---|---|---|---|
机侧变流器 | 无功功率极限值 | 0.30 | 0.7 |
无功功率实际值 | 0.30 | 0.6 | |
网侧变流器 | 无功功率极限值 | 0.15 | 0.5 |
无功功率实际值 | 0.15 | 0.3 |
表4 不同控制策略下风电机组无功变化情况
Tab. 4 Changes in turbine reactive power under different control strategies
类型 | 参数 | 传统控制策略/pu | 本文控制策略/pu |
---|---|---|---|
机侧变流器 | 无功功率极限值 | 0.30 | 0.7 |
无功功率实际值 | 0.30 | 0.6 | |
网侧变流器 | 无功功率极限值 | 0.15 | 0.5 |
无功功率实际值 | 0.15 | 0.3 |
风机所处转速/pu | 风机台数 | 单台最大功率/MW | 单台最大减载功率/MW | 单台风机减载功率/MW | 减载后转速/pu | 转速整定值/pu |
---|---|---|---|---|---|---|
0.7 | 5 | 1.42 | 0.46 | 0.75 | 1.3 | 1.2 |
0.8 | 5 | 1.68 | 0.40 | 0.59 | 1.2 | |
0.9 | 5 | 1.91 | 0.32 | 0.45 | 1.2 | |
1.0 | 3 | 2.00 | 0.25 | 0.30 | 1.2 | |
1.1 | 1 | 1.95 | 0.12 | 0.15 | 1.2 | |
>1.15 | 1 | 1.78 | 0 | 0 | 1.2 |
表5 电压重度骤升时风电机组转速分布情况及运行状况
Tab. 5 Speed distribution and operation of wind turbines during heavy voltage surge
风机所处转速/pu | 风机台数 | 单台最大功率/MW | 单台最大减载功率/MW | 单台风机减载功率/MW | 减载后转速/pu | 转速整定值/pu |
---|---|---|---|---|---|---|
0.7 | 5 | 1.42 | 0.46 | 0.75 | 1.3 | 1.2 |
0.8 | 5 | 1.68 | 0.40 | 0.59 | 1.2 | |
0.9 | 5 | 1.91 | 0.32 | 0.45 | 1.2 | |
1.0 | 3 | 2.00 | 0.25 | 0.30 | 1.2 | |
1.1 | 1 | 1.95 | 0.12 | 0.15 | 1.2 | |
>1.15 | 1 | 1.78 | 0 | 0 | 1.2 |
[1] | 陶思钰,江福庆 .集群化发展模式下风电场预测、规划及控制关键技术综述[J].电力工程技术,2024,43(1):86-99. |
TAO S Y, JIANG F Q .Review of the key technologies of wind farm cluster prediction,planning and control[J].Electric Power Engineering Technology,2024,43(1):86-99. | |
[2] | 黄文琦,方必武,戴珍,等 .基于多源数据图表示学习的风电出力预测方法[J].电力建设,2023,44(11):43-53. |
HUANG W Q, FANG B W, DAI Z,et al .Wind power output forecasting based on multi-source data graph representation learning[J].Electric Power Construction,2023,44(11):43-53. | |
[3] | 严新荣,张宁宁,马奎超,等 .我国海上风电发展现状与趋势综述[J].发电技术,2024,45(1):1-12. doi:10.12096/j.2096-4528.pgt.23093 |
YAN X R, ZHANG N N, MA K C,et al .Overview of current situation and trend of offshore wind power development in China[J].Power Generation Technology,2024,45(1):1-12. doi:10.12096/j.2096-4528.pgt.23093 | |
[4] | 郭峰,王悦,陆鑫,等 .含高比例风电的新型电力系统的经济运行及储能配置[J].智慧电力,2023,51(11):76-82. |
GUO F, WANG Y, LU X,et al .Economic operation and energy storage configuration of new power system with high penetration of wind power[J].Smart Power,2023,51(11):76-82. | |
[5] | 邵文才,延星,李鹏,等 .考虑风力发电的煤电厂低碳经济优化调度[J].全球能源互联网,2023,6(4):428-436. |
SHAO W C, YAN X, LI P,et al .Low carbon economy optimal scheduling of coal power plant considering wind power generation[J].Journal of Global Energy Interconnection,2023,6(4):428-436. | |
[6] | 韩璐,尹纯亚,戴晨,等 .高比例新能源送端系统暂态电压运行风险分析[J].电力系统保护与控制,2024,52(1):23-34. |
HAN L, YIN C Y, DAI C,et al .Transient voltage operational risk of a high-proportion new energy sending system[J].Power System Protection and Control,2024,52(1):23-34. | |
[7] | 王艺霏,脱长军,赵世昌,等 .考虑全磁链补偿的DFIG高电压穿越控制策略[J].电网与清洁能源,2024,40(12):84-92. |
WANG Y F, TUO C J, ZHAO S C,et al .High voltage ride-through control strategy for DFIG considering full magnetic flux linkage compensation[J].Power System and Clean Energy,2024,40(12):84-92. | |
[8] | 张锋,陈武晖,康佳乐,等 .双馈风电场故障穿越控制策略对风火打捆系统暂态稳定性影响及提升控制策略[J].电工技术学报,2025,40(3):717-729. |
ZHANG F, CHEN W H, KANG J L,et al .Research on the effect of fault ride-through control strategy of doubly-fed wind farms on transient stability of wind-fire bundling system and enhancement control strategy[J].Transactions of China Electrotechnical Society,2025,40(3):717-729. | |
[9] | 刘江山,李凤婷,尹纯亚,等 .换相失败引发送端混合级联直流系统换流母线暂态电压波动机理及抑制策略[J].电力系统保护与控制,2023,51(20):36-46. |
LIU J S, LI F T, YIN C Y,et al .Mechanism of and suppression strategy for transient voltage fluctuation in the commutator bus of a hybrid cascaded DC system caused by commutation failure[J].Power System Protection and Control,2023,51(20):36-46. | |
[10] | 王腾,张新燕,何星柱,等 .风储系统风电功率平抑与故障穿越的新型复合功率控制策略[J].现代电力,2023,40(6):863-871. |
WANG T, ZHANG X Y, HE X Z,et al .A new composite power control strategy for wind power stabilization and fault ride-through of wind storage system[J].Modern Electric Power,2023,40(6):863-871. | |
[11] | 陈康,王泽,郭永吉 .基于grcForest模型的风电并网系统暂态电压稳定评估[J].智慧电力,2023,51(1):31-37. |
CHEN K, WANG Z, GUO Y J .Transient voltage stability assessment of wind power grid-connected system based on grcForest model[J].Smart Power,2023,51(1):31-37. | |
[12] | 栗然,唐凡,刘英培,等 .双馈风电场新型无功补偿与电压控制方案[J].中国电机工程学报,2012,32(19):16-23. |
LI R, TANG F, LIU Y P,et al .A new scheme of reactive power compensation and voltage control for DFIG based wind farm[J].Proceedings of the CSEE,2012,32(19):16-23. | |
[13] | 刘其辉,毛未,高瑜 .提升无功调节能力的双馈式风力发电机转速变模式控制策略[J].电力自动化设备,2018,38(9):85-92. |
LIU Q H, MAO W, GAO Y .Variant mode control strategy of rotor speed for DFIG in promoting reactive power adjustment ability[J].Electric Power Automation Equipment,2018,38(9):85-92. | |
[14] | GUCHHAIT P K, BANERJEE A .Stability enhancement of wind energy integrated hybrid system with the help of static synchronous compensator and symbiosis organisms search algorithm[J].Protection and Control of Modern Power Systems,2020,5:11. doi:10.1186/s41601-020-00158-8 |
[15] | 杨蕾,周宗仁,郭成,等 .SVG协同风电场的电网电压稳定控制策略研究[J].电工电能新技术,2020,39(10):55-64. |
YANG L, ZHOU Z R, GUO C,et al .Study on voltage stability control strategy of power grid with SVG coordinated wind farm[J].Advanced Technology of Electrical Engineering and Energy,2020,39(10):55-64. | |
[16] | 杨硕,王伟胜,刘纯,等 .双馈风电场无功电压协调控制策略[J].电力系统自动化,2013,37(12):1-6. |
YANG S, WANG W S, LIU C,et al .Coordinative control strategy for reactive power and voltage of wind farms with doubly-fed induction generators[J].Automation of Electric Power Systems,2013,37(12):1-6. | |
[17] | 边晓燕,田春笋,符杨 .提升直驱型永磁风电机组故障穿越能力的改进控制策略研究[J].电力系统保护与控制,2016,44(9):69-74. |
BIAN X Y, TIAN C S, FU Y .A coordinated control strategy for fault ride-though capacity of direct-drive permanent magnet wind power generating units[J].Power System Protection and Control,2016,44(9):69-74. | |
[18] | 谢震,张兴,杨淑英,等 .基于虚拟阻抗的双馈风力发电机高电压穿越控制策略[J].中国电机工程学报,2012,32(27):16-23. |
XIE Z, ZHANG X, YANG S Y,et al .High voltage ride-through control strategy of doubly fed induction wind generators based on virtual impedance[J].Proceedings of the CSEE,2012,32(27):16-23. | |
[19] | 谢震,张兴,宋海华,等 .电网电压骤升故障下双馈风力发电机变阻尼控制策略[J].电力系统自动化,2012,36(3):39-46. |
XIE Z, ZHANG X, SONG H H,et al .Variable damping based control strategy of doubly fed induction generator based wind turbines under grid voltage swell[J].Automation of Electric Power Systems,2012,36(3):39-46. | |
[20] | 黄弘扬,王波,黄晓明,等 .基于双馈风电机组的分布式动态无功支撑系统[J].电力系统保护与控制,2016,44(24):140-147. |
HUANG H Y, WANG B, HUANG X M,et al .Distributed dynamic reactive power support system based on doubly-fed wind turbine[J].Power System Protection and Control,2016,44(24):140-147. | |
[21] | XU D G, LI R, LIU Y C,et al .Reactive power analysis and control of doubly fed induction generator wind farm[C]//2009 13th European Conference on Power Electronics and Applications.Barcelona,Spain:IEEE,2009:1-10. |
[22] | 崔森,颜湘武,李锐博 .提高双馈风电机组动态无功协调控制能力的实验研究[J].电力系统保护与控制,2022,50(8):117-129. |
CUI S, YAN X W, LI R B .Experimental research on improving the dynamic reactive power coordinated control capability of doubly-fed induction wind turbine[J].Power System Protection and Control,2022,50(8):117-129. |
[1] | 孙正龙, 伞吉强. 面向扭振分析的含虚拟惯量双馈风机轴系研究[J]. 发电技术, 2025, 46(2): 314-325. |
[2] | 王玲芝, 张新波. 基于改进混合高斯模型的风速分布拟合与风机年发电量估算[J]. 发电技术, 2025, 46(1): 103-112. |
[3] | 周丹, 袁至, 李骥, 范玮. 考虑平抑未来时刻风电波动的混合储能系统超前模糊控制策略[J]. 发电技术, 2024, 45(3): 412-422. |
[4] | 邵宜祥, 刘剑, 胡丽萍, 过亮, 方渊, 李睿. 一种改进组合神经网络的超短期风速预测方法研究[J]. 发电技术, 2024, 45(2): 323-330. |
[5] | 刘洪波, 刘永发, 任阳, 孙黎, 刘珅诚. 高风电渗透率下考虑系统风电备用容量的储能配置[J]. 发电技术, 2024, 45(2): 260-272. |
[6] | 余潇, 卜广全, 王姗姗. 风电经柔直孤岛送出交流暂态过电压抑制策略研究[J]. 发电技术, 2022, 43(4): 618-625. |
[7] | 黄树帮, 陈耀, 金宇清. 碳中和背景下多通道特征组合超短期风电功率预测[J]. 发电技术, 2021, 42(1): 60-68. |
[8] | 宋学伟, 刘玉瑶. 基于改进K-means聚类的风光发电场景划分[J]. 发电技术, 2020, 41(6): 625-630. |
[9] | 朱月,沙俊民,赵静. 含不同机组风电场低电压穿越能力仿真研究[J]. 发电技术, 2020, 41(3): 328-333. |
[10] | 匡生,王蓓蓓. 考虑储能寿命和参与调频服务的风储联合运行优化策略[J]. 发电技术, 2020, 41(1): 73-78. |
[11] | 张斌,张超,韩晓娟. 含规模化风电并网的负荷频率云PI控制策略研究[J]. 发电技术, 2019, 40(6): 516-520. |
[12] | 李相俊,许格健. 基于长短期记忆神经网络的风力发电功率预测方法[J]. 发电技术, 2019, 40(5): 426-433. |
[13] | 吴明哲,陈武晖. VSC-HVDC稳定控制研究[J]. 发电技术, 2019, 40(1): 28-39. |
[14] | 仇梓峰,王爽心,李蒙. 基于无人机图像的风力发电机叶片缺陷识别[J]. 发电技术, 2018, 39(3): 277-285. |
[15] | 孔德同, 贾思远, 王天品, 刘庆超. 基于振动分析的风力发电机故障诊断方法[J]. 发电技术, 2017, 38(1): 54-58. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||