发电技术 ›› 2024, Vol. 45 ›› Issue (6): 1016-1022.DOI: 10.12096/j.2096-4528.pgt.24173

• 可控核聚变及其发电技术 •    

氘氘聚变中子源大口径强磁场磁压缩磁体的设计与优化

周渝深1,2, 潘垣1,2, 李传1,2, 饶波1,2, 杨勇1,2   

  1. 1.强电磁技术全国重点实验室(华中科技大学电气与电子工程学院),湖北省 武汉市 430074
    2.磁约束聚变与等离子体国际合作联合实验室(华中科技大学电气与电子工程学院),湖北省 ;武汉市 430074
  • 收稿日期:2024-08-01 修回日期:2024-10-25 出版日期:2024-12-31 发布日期:2024-12-30
  • 通讯作者: 李传
  • 作者简介:周渝深(2000),男,硕士研究生,研究方向为大口径强磁场磁体的多物理场耦合的有限元分析与建造测试,870039748@qq.com
    潘垣(1933),男,教授,中国工程院院士,研究方向为超导电力、脉冲功率技术、等离子体物理与核聚变技术;
    李传(1989),男,博士,副教授,研究方向为带电粒子诱导水汽成核及生长机理研究、气体放电数值模拟、静电集雾/消雾技术研究、磁体线圈和高功率大电流电抗器的研制与优化,本文通信作者,lichuan@hust.edu.cn
    饶波(1986),男,博士,副教授,研究方向为磁约束聚变应用中的电磁装置设计及相关等离子体控制,聚变新途径、新方法;
    杨勇(1989),男,博士,讲师,研究方向为聚变磁体电源、电磁分析与设计。
  • 基金资助:
    国家重点研发计划项目(2022YFE03150102);国家自然科学基金项目(52207158);华中科技大学“交叉研究支持计划”(2024JCYJ017)

Design and Optimization of Deuterium-Deuterium Fusion Neutron Source Large-Size and High Magnetic Field Magnetic Compression Magnet

Yushen ZHOU1,2, Yuan PAN1,2, Chuan LI1,2, Bo RAO1,2, Yong YANG1,2   

  1. 1.State Key Laboratory of Advanced Electromagnetic Engineering and Technology (School of Electrical and Electronic Engineering, Huazhong University of Science and Technology), Wuhan 430074, Hubei Province, China
    2.International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics (School of Electrical and Electronic Engineering, Huazhong University of Science and Technology), Wuhan 430074, Hubei Province, China
  • Received:2024-08-01 Revised:2024-10-25 Published:2024-12-31 Online:2024-12-30
  • Contact: Chuan LI
  • Supported by:
    National Key Research and Development Program of China(2022YFE03150102);National Natural Science Foundation of China(52207158);Interdisciplinary Research Program of HUST(2024JCYJ017)

摘要:

目的 为了真实反映聚变中子辐照特性损伤,有必要开展高通量聚变中子源的研究。磁约束氘氘聚变中子源预研装置是国际首台可实现场反等离子体大压缩比级联磁压缩的实验装置,作为该装置核心部件之一的磁压缩磁体,设计要求中心磁场的磁感应强度在500 μs内从0 T上升至7 T,为此,提出了针对磁压缩磁体导体部分的设计思路。 方法 围绕磁体的导体设计,从导体材料选取、导体匝间距离与导体径向厚度3方面入手,通过有限元仿真软件分析导体应力情况,得到了导体材料电导率、导体匝间距离以及导体径向厚度对导体应力的影响。 结果 确定了下一步磁体的设计思路,即在欧姆损耗允许的范围内适当选择电导率偏低的导体材料,在轴向空间允许的范围内通过增加绝缘层厚度的方式适当增加导体匝间距,在材料许用应力的范围内适当减小导体径向厚度以降低建设成本。 结论 随着中子源预研装置项目的进一步推进,所提出的设计思路可为磁压缩磁体装置的设计提供优化方向。

关键词: 可控核聚变, 磁压缩磁体, 聚变中子源, 大口径脉冲强磁体, 有限元分析, 氘氘聚变, 磁场

Abstract:

Objectives In order to truly reflect the damage characteristic of fusion neutron irradiation, it is necessary to carry out research on high-flux fusion neutron sources. As the first experimental device in the world that can realize cascaded magnetic compression with high compression ratio of field-reversed configuration plasma, the preliminary research device of magnetic confinement deuterium-deuterium fusion neutron source has important scientific significance. As one of the core components of the device, the magnetic compression magnet was designed to increase the magnetic induction intensity of the central magnetic field from 0 T to 7 T within 500 μs. Therefore, a design idea for the conductor part of the magnetic compression magnet was proposed. Methods Based on the conductor design of magnet, the conductor stress was analyzed by finite element simulation software from the three aspects of conductor material selection, conductor turn distance and conductor radial thickness. The influence of conductor material conductivity, conductor turn distance and conductor radial thickness on conductor stress was obtained. Results The design idea of the next magnet is determined. That is, the conductor material with low conductivity is appropriately selected within the allowable range of ohmic loss, the conductor turn spacing is appropriately increased by increasing the thickness of the insulation layer within the allowable range of axial space, and the radial thickness of the conductor is appropriately reduced within the allowable range of material stress to reduce the construction cost. Conclusions With the further development of the preliminary research device of neutron source project, the design ideas proposed in this paper can provide optimization direction for the design of magnetic compression magnet device.

Key words: controllable nuclear fusion, magnetic compression magnet, fusion neutron source, large-size pulsed high-field magnet, finite element analysis, deuterium-deuterium fusion, magnetic field

中图分类号: