发电技术 ›› 2025, Vol. 46 ›› Issue (5): 909-922.DOI: 10.12096/j.2096-4528.pgt.25046
路诗梦1,2, 孙建林1,2, 曾凡杰1, 林小杰3, 吴均湛1, 马添翼1, 钟崴3, 谢立坤4, 谢伟5
收稿日期:2025-01-16
修回日期:2025-04-07
出版日期:2025-10-31
发布日期:2025-10-23
作者简介:基金资助:Shimeng LU1,2, Jianlin SUN1,2, Fanjie ZENG1, Xiaojie LIN3, Junzhan WU1, Tianyi MA1, Wei ZHONG3, Likun XIE4, Wei XIE5
Received:2025-01-16
Revised:2025-04-07
Published:2025-10-31
Online:2025-10-23
Supported by:摘要:
目的 在“双碳”背景下,推动地热能在零碳区域能源系统中的规模化应用是实现能源转型的重要途径。通过系统梳理地热能开发与利用技术的研究进展,揭示其在多能互补系统中的关键作用,为构建高效、稳定的零碳能源系统提供理论支撑和技术路径。 方法 分析了直接利用地热能的取热技术、地源热泵技术和地热发电技术的研究现状,指出了其存在的问题;介绍了地热能与碳捕集、利用与封存(carbon capture,utilization and storage,CCUS),太阳能,生物质能,氢能耦合的综合能源系统;分析了零碳园区架构并整理了零碳项目案例,展望了地热能结合人工智能(artificial intelligence,AI)等前沿技术在建设零碳系统方面的发展前景,提出了未来地热能开发与利用技术的研究方向。 结论 地热能技术体系已初步形成,但深层地热开发、增强型地热系统适应性提升等技术瓶颈仍需突破;地热多能耦合系统可显著提升能源利用效率,但系统集成优化和动态协调问题亟待解决;AI等数字化技术为地热资源精准开发和系统优化提供了新思路;零碳园区示范项目验证了地热能在区域能源系统中的关键作用。未来应重点发展储层改造、多能互补、智能调控等关键技术,同时完善政策支持体系,推动地热能在零碳能源转型中的规模化应用。
中图分类号:
路诗梦, 孙建林, 曾凡杰, 林小杰, 吴均湛, 马添翼, 钟崴, 谢立坤, 谢伟. 零碳地热能综合利用技术研究进展[J]. 发电技术, 2025, 46(5): 909-922.
Shimeng LU, Jianlin SUN, Fanjie ZENG, Xiaojie LIN, Junzhan WU, Tianyi MA, Wei ZHONG, Likun XIE, Wei XIE. Research Progress on Comprehensive Utilization Technologies of Zero-Carbon Geothermal Energy[J]. Power Generation Technology, 2025, 46(5): 909-922.
| [1] | 王扬,路菲,李骥,等 .基于综合优化目标的低碳园区能源系统规划配置[J].中国电力,2024,57(4):14-24. |
| WANG Y, LU F, LI J,et al .Multi-energy system planning and configuration study for low-carbon parks based on comprehensive optimization objectives[J].Electric Power,2024,57(4):14-24. | |
| [2] | 许洪华,邵桂萍,鄂春良,等 .我国未来能源系统及能源转型现实路径研究[J].发电技术,2023,44(4):484-491. doi:10.12096/j.2096-4528.pgt.23002 |
| XU H H, SHAO G P, E C L,et al .Research on China’s future energy system and the realistic path of energy transformation[J].Power Generation Technology,2023,44(4):484-491. doi:10.12096/j.2096-4528.pgt.23002 | |
| [3] | 吴洪涛,王惠民,郑惠峰,等 .浅层地热开采中砂岩单裂隙渗流传热试验研究[J].高校地质学报,2024,30(5):593-602. |
| WU H T, WANG H M, ZHENG H F,et al .Experimental study on seepage and heat transfer of a single fracture in sandstone during shallow geothermal extraction[J].Geological Journal of China Universities,2024,30(5):593-602. | |
| [4] | 徐若恩,陈金华,唐茂川,等 .基于土壤分层当量物性的地埋管换热器换热模型研究[J].可再生能源,2024,42(2):174-181. |
| XU R E, CHEN J H, TANG M C,et al .Research on heat transfer model of buried pipe heat exchanger based on equivalent physical properties of soil stratification[J].Renewable Energy Resources,2024,42(2):174-181. | |
| [5] | 刘红,肖宇,肖杨,等 .土体热力学性质及本构关系研究综述[J].土木与环境工程学报(中英文),2025,47(3):21-35. |
| LIU H, XIAO Y, XIAO Y,et al .Review on the thermomechanical behaviors and constitutive relations of soil[J].Journal of Civil and Environmental Engineering,2025,47(3):21-35. | |
| [6] | 宋先知,许富强,姬佳炎,等 .多层合采油藏废弃井网取热性能评价[J].天然气工业,2022,42(4):54-62. |
| SONG X Z, XU F Q, JI J Y,et al .Evaluation on the heat extraction performance of abandoned well pattern in multi-layer commingled production oil reservoirs[J].Natural Gas Industry,2022,42(4):54-62. | |
| [7] | 张连平,王世民 .封闭地热系统水平井采热储层内渗流与传热的有限元模拟[J].地球物理学报,2023,66(1):314-331. |
| ZHANG L P, WANG S M .Finite-element modeling of porous flow and heat transfer in a reservoir with heat extraction by a horizontal well of a closed geothermal system[J].Chinese Journal of Geophysics,2023,66(1):314-331. | |
| [8] | 卜宪标,冉运敏,王令宝,等 .单井地热供暖关键因素分析[J].浙江大学学报(工学版),2019,53(5):957-964. |
| BU X B, RAN Y M, WANG L B,et al .Analysis of key factors affecting single well geothermal heating[J].Journal of Zhejiang University (Engineering Science),2019,53(5):957-964. | |
| [9] | 张杰,赵萌,汪浩瀚,等 .多分支水平井SC-CO2增强型地热系统取热评价研究[J].工程热物理学报,2024,45(5):1275-1283. |
| ZHANG J, ZHAO M, WANG H H,et al .Heat extraction evaluation of SC-CO2 enhanced geothermal system in multi-lateral horizontal wells[J].Journal of Engineering Thermophysics,2024,45(5):1275-1283. | |
| [10] | 唐巨鹏,邱于曼 .生产井井间距离对增强型地热系统影响分析[J].计算力学学报,2023,40(1):126-132. |
| TANG J P, QIU Y M .Analysis of the influence of the distance between producing Wells on the enhanced geothermal system[J].Chinese Journal of Computational Mechanics,2023,40(1):126-132. | |
| [11] | 王天宇,周小夏,李根生,等 .基于热-流-固耦合的多分支径向井地热开发模型及其取热效果分析[J].天然气工业,2023,43(3):133-144. |
| WANG T Y, ZHOU X X, LI G S,et al .Geothermal development model of multilateral radial well and its heat extraction effect analysis based on thermal-hydraulic-mechanical coupling[J].Natural Gas Industry,2023,43(3):133-144. | |
| [12] | 冯波,曹云龙,齐晓飞,等 .增强型地热系统热-水动力-力学(THM)耦合模拟:以河北马头营凸起区为例[J].吉林大学学报(地球科学版),2023,53(6):1892-1906. |
| FENG B, CAO Y L, QI X F,et al .Thermal-hydrodynamic-mechanical (THM) coupling simulation of enhanced geothermal system development in Matouying uplift area,Hebei Province[J].Journal of Jilin University (Earth Science Edition),2023,53(6):1892-1906. | |
| [13] | 孙致学,姜传胤,张凯,等 .基于离散裂缝模型的CO2增强型地热系统THM耦合数值模拟[J].中国石油大学学报(自然科学版),2020,44(6):79-87. |
| SUN Z X, JIANG C Y, ZHANG K,et al .Numerical simulation for heat extraction of CO2-EGS with thermal-hydraulic-mechanical coupling method based on discrete fracture models[J].Journal of China University of Petroleum (Edition of Natural Science),2020,44(6):79-87. | |
| [14] | 崔翰博,唐巨鹏,姜昕彤 .水流损失和热补偿共同作用对增强型地热系统(EGS)产能影响的研究[J].应用力学学报,2020,37(1):200-208. |
| CUI H B, TANG J P, JIANG X T .Influence of water flow loss and thermal compensation on enhanced geothermal system (EGS) production capacity[J].Chinese Journal of Applied Mechanics,2020,37(1):200-208. | |
| [15] | 杨睿月,黄中伟,温海涛,等 .雄安新区深部地热储层水力喷射酸化压裂技术[J].天津大学学报(自然科学与工程技术版),2023,56(12):1277-1287. |
| YANG R Y, HUANG Z W, WEN H T,et al .Hydra-jet acid fracturing technology in deep geothermal reservoirs of Xiongan New Area[J].Journal of Tianjin University (Science and Technology),2023,56(12):1277-1287. | |
| [16] | 冯波,柯尊嵩,刘彦广,等 .增强型地热系统储层堵塞机理及解堵技术进展[J].天然气工业,2022,42(12):165-183. |
| FENG B, KE Z S, LIU Y G,et al .Plugging mechanism and plugging removal technologies for enhanced geothermal system reservoirs[J].Natural Gas Industry,2022,42(12):165-183. | |
| [17] | 孙弘韬,黄文博,刘鲲鹏,等 .井下流体抽注强制对流作用下超长重力热管地热系统取热强化增产研究[J].新能源进展,2024,12(5):588-596. |
| SUN H T, HUANG W B, LIU K P,et al .Research on heat extraction enhancement and increased production of super-long gravity heat pipe geothermal system under forced convection of downhole fluid withdrawal[J].Advances in New and Renewable Energy,2024,12(5):588-596. | |
| [18] | HOU G Y, TAHERIAN H, SONG Y,et al .A systematic review on optimal analysis of horizontal heat exchangers in ground source heat pump systems[J].Renewable and Sustainable Energy Reviews,2022,154:111830. doi:10.1016/j.rser.2021.111830 |
| [19] | LYNE Y, PAKSOY H, FARID M .Laboratory investigation on the use of thermally enhanced phase change material to improve the performance of borehole heat exchangers for ground source heat pumps[J].International Journal of Energy Research,2019,43(9):4148-4156. doi:10.1002/er.4522 |
| [20] | JAVADI H, MOUSAVI AJAROSTAGHI S S, POURFALLAH M,et al .Performance analysis of helical ground heat exchangers with different configurations[J].Applied Thermal Engineering,2019,154:24-36. doi:10.1016/j.applthermaleng.2019.03.021 |
| [21] | PU L, XU L L, QI D,et al .A novel tree-shaped ground heat exchanger for GSHPs in severely cold regions[J].Applied Thermal Engineering,2019,146:278-287. doi:10.1016/j.applthermaleng.2018.09.111 |
| [22] | ZHANG M K, LIU X B, BISWAS K,et al .A three-dimensional numerical investigation of a novel shallow bore ground heat exchanger integrated with phase change material[J].Applied Thermal Engineering,2019,162:114297. doi:10.1016/j.applthermaleng.2019.114297 |
| [23] | DANESHAZARIAN R, ESLAMI R, AZIZI N,et al .Performance evaluation of a novel nano-enhanced phase change material for thermal energy storage applications[J].Journal of Energy Storage,2023,74:109376. doi:10.1016/j.est.2023.109376 |
| [24] | HU R, CHEN H, LAN T,et al .Research on thermal performance of ground source heat pump based on artificial neural network predictive model[J].Applied Thermal Engineering,2024,236:121903. doi:10.1016/j.applthermaleng.2023.121903 |
| [25] | XU Y J, YAO Z S, HUANG X W,et al .Heat transfer characteristics and heat conductivity prediction model of waste steel slag-clay backfill material[J].Thermal Science and Engineering Progress,2023,46:102203. doi:10.1016/j.tsep.2023.102203 |
| [26] | WANG F, YOU T .Comparative analysis on the life cycle climate performance of ground source heat pump using alternative refrigerants[J].Case Studies in Thermal Engineering,2023,42:102761. doi:10.1016/j.csite.2023.102761 |
| [27] | DAI B M, ZHAO P, LIU S C,et al .Assessment of heat pump with carbon dioxide/low-global warming potential working fluid mixture for drying process:Energy and emissions saving potential[J].Energy Conversion and Management,2020,222:113225. doi:10.1016/j.enconman.2020.113225 |
| [28] | PISHKARIAHMADABAD M, AYED H, XIA W F,et al .Thermo-economic analysis of working fluids for a ground source heat pump for domestic uses[J].Case Studies in Thermal Engineering,2021,27:101330. doi:10.1016/j.csite.2021.101330 |
| [29] | LIU Y F, MEI X S, ZHANG G Z,et al .Long-term performance prediction of ground source heat pump system based on co-simulation and artificial neural network[J].Journal of Building Engineering,2023,79:107949. doi:10.1016/j.jobe.2023.107949 |
| [30] | PUTTIGE A R, ANDERSSON S, ÖSTIN R,et al .Modeling and optimization of hybrid ground source heat pump with district heating and cooling[J].Energy and Buildings,2022,264:112065. doi:10.1016/j.enbuild.2022.112065 |
| [31] | XIE Y W, HU P F, PENG D G,et al .Development of a group control strategy based on multi-step load forecasting and its application in hybrid ground source heat pump[J].Energy,2023,273:127196. doi:10.1016/j.energy.2023.127196 |
| [32] | 钟崴,薄其明,蔡晨钰,等 .基于模型预测的地热-燃气互补供暖系统智慧调度控制[J].综合智慧能源,2023,45(12):29-35. |
| ZHONG W, BO Q M, CAI C Y,et al .Intelligent scheduling and control of a geothermal-gas complementary heating system based on model prediction[J].Integrated Intelligent Energy,2023,45(12):29-35. | |
| [33] | 龙潇,张晋宾,陈令特 .未来能源技术展望[J].发电技术,2025,46(4):651-693. |
| LONG X, ZHANG J B, CHEN L T .Prospects for future energy technologies[J].Power Generation Technology,2025,46(4):651-693. | |
| [34] | 李克勋,宗明珠,魏高升 .地热能及与其他新能源联合发电综述[J].发电技术,2020,41(1):79-87. doi:10.12096/j.2096-4528.pgt.19013 |
| LI K X, ZONG M Z, WEI G S .Overview of geothermal power generation and joint power generation with other new energy sources[J].Power Generation Technology,2020,41(1):79-87. doi:10.12096/j.2096-4528.pgt.19013 | |
| [35] | 付文锋,王金楹,王蓝婧,等 .基于燃机余热和地热能的联合发电系统优化设计及热力性能分析[J].动力工程学报,2024,44(2):328-338. |
| FU W F, WANG J Y, WANG L J,et al .Optimal design and thermal performance analysis of combined power generation system based on gas turbine waste heat and geothermal energy[J].Journal of Chinese Society of Power Engineering,2024,44(2):328-338. | |
| [36] | YIN H M, HU L K, LI Y,et al .Application of ORC in a distributed integrated energy system driven by deep and shallow geothermal energy[J].Energies,2021,14(17):5466. doi:10.3390/en14175466 |
| [37] | 李太禄,李学龙,谢迎春,等 .有机朗肯-单级闪蒸循环发电性能优化研究[J].可再生能源,2022,40(6):773-780. |
| LI T L, LI X L, XIE Y C,et al .Power generation performance optimization of organic Rankine-single flash cycle[J].Renewable Energy Resources,2022,40(6):773-780. | |
| [38] | 梁健,王蒙,杨亚欣,等 .基于压缩空气储能与增强型地热的三联产系统热力学分析[J].中国电力,2024,57(1):209-218. |
| LIANG J, WANG M, YANG Y X,et al .Thermodynamic analysis of CCHP with compressed air energy storage and enhanced geothermal technology[J].Electric Power,2024,57(1):209-218. | |
| [39] | 陈然,刘强,蒙冬玉 .过冷度对地热发电非共沸工质有机朗肯循环热力性能的影响[J].发电技术,2020,41(2):190-197. doi:10.12096/j.2096-4528.pgt.19098 |
| CHEN R, LIU Q, MENG D Y .Effect of subcooling on thermal performance of organic Rankine cycle with zeotropic mixture in geothermal power generation[J].Power Generation Technology,2020,41(2):190-197. doi:10.12096/j.2096-4528.pgt.19098 | |
| [40] | 黄璜,刘然,李茜,等 .地热能多级利用技术综述[J].热力发电,2021,50(9):1-10. |
| HUANG H, LIU R, LI Q,et al .Overview on multi-level utilization techniques of geothermal energy[J].Thermal Power Generation,2021,50(9):1-10. | |
| [41] | 侯正猛,吴林,张烈辉,等 .二氧化碳地下生化合成天然气耦合地热利用:技术系统、挑战及展望[J].天然气工业,2023,43(11):181-190. |
| HOU Z M, WU L, ZHANG L H,et al .CO2-based underground biochemical synthesis of natural gas coupled with geothermal energy production:technology system,challenges,and prospects[J].Natural Gas Industry,2023,43(11):181-190. | |
| [42] | 张富珍,胥蕊娜,姜培学 .二氧化碳捕集与地热发电全链能流分析[J].天然气工业,2022,42(4):130-138. |
| ZHANG F Z, XU R N, JIANG P X .Energy flow analysis on the full-chain system of carbon dioxide capture and geothermal power generation[J].Natural Gas Industry,2022,42(4):130-138. | |
| [43] | 付雷,马鑫,刁玉杰,等 .二氧化碳羽流地热系统的碳封存经济分析[J].中国地质,2022,49(5):1374-1384. |
| FU L, MA X, DIAO Y J,et al .Economic analysis of carbon storage in CO2 plume geothermal system[J].Geology in China,2022,49(5):1374-1384. | |
| [44] | 石宇 .多分支井循环二氧化碳开采地热机理与参数研究[D].北京:中国石油大学(北京),2020. |
| SHI Y .Research on mechanism and parameters of geothermal production by circulating carbon dioxide in multi-branch wells[D].Beijing:China University of Petroleum (Beijing),2020. | |
| [45] | GUO T K, GONG F C, WANG X Z,et al .Performance of enhanced geothermal system (EGS) in fractured geothermal reservoirs with CO2 as working fluid[J].Applied Thermal Engineering,2019,152:215-230. doi:10.1016/j.applthermaleng.2019.02.024 |
| [46] | WANG F, DENG S, ZHAO J,et al .Performance and economic assessments of integrating geothermal energy into coal-fired power plant with CO2 capture[J].Energy,2017,119:278-287. doi:10.1016/j.energy.2016.12.029 |
| [47] | 刘强,张恩涛,贺江龙,等 .太阳能-地热能混合式发电系统的性能评价[J].中国电机工程学报,2023,43(6):2109-2119. |
| LIU Q, ZHANG E T, HE J L,et al .Performance evaluation of a hybrid solar-geothermal power generation system[J].Proceedings of the CSEE,2023,43(6):2109-2119. | |
| [48] | 王玉诗 .太阳能与地热能耦合发电系统的数值模拟和性能分析[D].天津:天津大学,2019. doi:10.1016/j.egypro.2019.01.023 |
| WANG Y S .Numerical simulation and performance analysis of solar-geothermal coupled power generation system[D].Tianjin:Tianjin University,2019. doi:10.1016/j.egypro.2019.01.023 | |
| [49] | SUN T T, YANG L Y, JIN L,et al .A novel solar-assisted ground-source heat pump (SAGSHP) with seasonal heat-storage and heat cascade utilization:field test and performance analysis[J].Solar Energy,2020,201:362-372. doi:10.1016/j.solener.2020.03.030 |
| [50] | 卜宪标,冉运敏,李华山,等 .单井地热联合太阳能供暖系统性能模拟[J].哈尔滨工程大学学报,2020,41(3):397-403. |
| BU X B, RAN Y M, LI H S,et al .Performance simulation of a single geothermal well combined with a solar energy heating system[J].Journal of Harbin Engineering University,2020,41(3):397-403. | |
| [51] | SAZON T A, ZHANG Q, NIKPEY H .Comparison of different configurations of a solar-assisted ground-source CO2 heat pump system for space and water heating using Taguchi-grey relational analysis[J].Energy Conversion and Management,2024,300:117881. doi:10.1016/j.enconman.2023.117881 |
| [52] | ARSLAN O, ERGENEKON ARSLAN A, EDDINE BOUKELIA T .Modelling and optimization of domestic thermal energy storage based heat pump system for geothermal district heating[J].Energy and Buildings,2023,282:112792. doi:10.1016/j.enbuild.2023.112792 |
| [53] | 付文锋,陆家纬,王蓝婧,等 .吸收式热泵辅助的太阳能-地热多联产系统4E研究[J].动力工程学报,2021,41(11):1010-1018. |
| FU W F, LU J W, WANG L J,et al .4E research on solar-geothermal poly-generation system assisted by absorption heat pump[J].Journal of Chinese Society of Power Engineering,2021,41(11):1010-1018. | |
| [54] | 耿直,付营剑,姚瑶,等 .太阳能与地热互补清洁利用系统特性分析[J].热力发电,2022,51(6):17-24. |
| GENG Z, FU Y J, YAO Y,et al .Characteristic analysis for complementary clean utilization system of solar and geothermal energy[J].Thermal Power Generation,2022,51(6):17-24. | |
| [55] | 孙冠宇,王永真,颜艺灿,等 .油田区域地热+多能互补能源系统技术应用分析[J].综合智慧能源,2023,45(12):63-70. |
| SUN G Y, WANG Y Z, YAN Y C,et al .Application analysis on a geothermal + multi-energy complementary energy system for an oilfield area[J].Integrated Intelligent Energy,2023,45(12):63-70. | |
| [56] | QIU G D, LI K F, CAI W H,et al .Optimization of an integrated system including a photovoltaic/thermal system and a ground source heat pump system for building energy supply in cold areas[J].Applied Energy,2023,349:121698. doi:10.1016/j.apenergy.2023.121698 |
| [57] | WANG Y F, ZHANG Y F, HAO J H,et al .Modeling and operation optimization of an integrated ground source heat pump and solar PVT system based on heat current method[J].Solar Energy,2021,218:492-502. doi:10.1016/j.solener.2021.03.003 |
| [58] | LI J W, BAO L L, NIU G Q,et al .Research on renewable energy coupling system based on medium-deep ground temperature attenuation[J].Applied Energy,2024,353:122187. doi:10.1016/j.apenergy.2023.122187 |
| [59] | CHEN H, WANG Y H, LI J R,et al .Thermodynamic analysis and economic assessment of an improved geothermal power system integrated with a biomass-fired cogeneration plant[J].Energy,2022,240:122477. doi:10.1016/j.energy.2021.122477 |
| [60] | BRIOLA S, GABBRIELLI R, BISCHI A .Off-design performance analysis of a novel hybrid binary geothermal-biomass power plant in extreme environmental conditions[J].Energy Conversion and Management,2019,195:210-225. doi:10.1016/j.enconman.2019.05.008 |
| [61] | 王义函,王华霆,卢荻,等 .地热与生物质直燃耦合的热电联产系统热力学性能分析[J].动力工程学报,2022,42(7):677-685. |
| WANG Y H, WANG H T, LU D,et al .Thermodynamic performance analysis of cogeneration system for coupling of geothermal and biomass-fired plant[J].Journal of Chinese Society of Power Engineering,2022,42(7):677-685. | |
| [62] | WANG D, ALI M A, ALIZADEH A,et al .Thermoeconomic appraisal of a novel power and hydrogen cogeneration plant with integration of biomass and geothermal energies[J].International Journal of Hydrogen Energy,2024,52:385-400. doi:10.1016/j.ijhydene.2023.02.066 |
| [63] | 汪飞,喻梦伊,陈良勇 .氢能产业技术经济性分析及展望[J].电力科技与环保,2024,40(5):445-454. |
| WANG F, YU M Y, CHEN L Y .Technical and economic analysis and outlook of hydrogen energy industry[J].Electric Power Technology and Environmental Protection,2024,40(5):445-454. | |
| [64] | 申刘飞,翟雨佳,吴星徵,等 .海上超导风电制氢一体化研究进展与发展趋势[J].电工技术学报,2025,40(11):3362-3380. |
| SHEN L F, ZHAI Y J, WU X Z,et al .Progress and development trend of integrated research on hydrogen production from offshore superconducting wind power[J].Transactions of China Electrotechnical Society,2025,40(11):3362-3380. | |
| [65] | SEYAM S, DINCER I, AGELIN-CHAAB M .Analysis of a clean hydrogen liquefaction plant integrated with a geothermal system[J].Journal of Cleaner Production,2020,243:118562. doi:10.1016/j.jclepro.2019.118562 |
| [66] | 王婷,韩慧玉 .地热-氢综合能源系统的双层优化模型[J].电力科学与工程,2022,38(10):36-46. |
| WANG T, HAN H Y .A double layer optimization model for geothermal-hydrogen integrated energy system[J].Electric Power Science and Engineering,2022,38(10):36-46. | |
| [67] | ALIRAHMI S M, ASSAREH E, POURGHASSAB N N,et al .Green hydrogen & electricity production via geothermal-driven multi-generation system:Thermodynamic modeling and optimization[J].Fuel,2022,308:122049. doi:10.1016/j.fuel.2021.122049 |
| [68] | 宋卓然,程孟增,牛威,等 .面向能源互联网的零碳园区优化规划关键技术与发展趋势[J].电力建设,2022,43(12):15-26. doi:10.12204/j.issn.1000-7229.2022.12.002 |
| SONG Z R, CHENG M Z, NIU W,et al .Key technologies and development trends of zero-carbon park optimization planning for energy Internet[J].Electric Power Construction,2022,43(12):15-26. doi:10.12204/j.issn.1000-7229.2022.12.002 | |
| [69] | 陈艳波,张宁,李嘉祺,等 .零碳园区研究综述及展望[J].中国电机工程学报,2024,44(14):5496-5517. |
| CHEN Y B, ZHANG N, LI J Q,et al .Review and prospect of zero carbon park research[J].Proceedings of the CSEE,2024,44(14):5496-5517. | |
| [70] | 郑国光 .支撑“双碳”目标实现的问题辨识与关键举措研究[J].中国电力,2023,56(11):1-8. |
| ZHENG G G .Problem identification and key measures to support the achievement of carbon peak and carbon neutrality[J].Electric Power,2023,56(11):1-8. |
| [1] | 邹博, 任建地, 许道明, 邓立生, 廖力达, 肖俊兵. 氯化物熔盐储热技术应用于新能源发电的研究进展[J]. 发电技术, 2025, 46(5): 872-884. |
| [2] | 严新荣, 高翔, 林达, 郑建, 游源, 陶志伟, 吴昊, 丁正桃. 大模型在电力行业的应用与挑战[J]. 发电技术, 2025, 46(4): 637-650. |
| [3] | 龙潇, 张晋宾, 陈令特. 未来能源技术展望[J]. 发电技术, 2025, 46(4): 651-693. |
| [4] | 鲁亚楠, 徐涛, 刘泽楠. 制氢系统对双馈风机串补系统次同步振荡特性的影响[J]. 发电技术, 2025, 46(4): 715-726. |
| [5] | 闫朝阳, 李蓝青, 徐浩嘉, 庄锁, 张振华, 戎子睿. 基于白鲨算法与改进长短期记忆网络的光伏出力预测[J]. 发电技术, 2025, 46(4): 778-787. |
| [6] | 刘佳佳, 巨星. 弃电热储能光伏-光热复合发电系统技术经济性分析[J]. 发电技术, 2025, 46(4): 807-817. |
| [7] | 张俊, 蒲天骄, 高文忠, 刘友波, 裴玮, 许沛东, 高天露, 白昱阳. 电力系统智能计算的关键技术及应用展望[J]. 发电技术, 2025, 46(3): 421-437. |
| [8] | 张祖菡, 刘敦楠, 凡航, 杨柳青, 段赟杰, 李赟, 马振宇. 基于大语言模型的电力系统预测技术研究综述[J]. 发电技术, 2025, 46(3): 438-453. |
| [9] | 徐浩然, 张瑾昀, 马歆, 雷文强, 曹杰铭. 基于大语言模型的图检索增强生成技术在核电领域的应用与展望[J]. 发电技术, 2025, 46(3): 454-466. |
| [10] | 陈艺璇, 王嘉阳, 卓映君, 卢斯煜, 周保荣. 人工智能在电力系统运行模拟加速中的应用综述[J]. 发电技术, 2025, 46(3): 467-481. |
| [11] | 杨博, 张子健. 基于人工智能的可再生能源电解水制氢关键技术及发展前景分析[J]. 发电技术, 2025, 46(3): 482-495. |
| [12] | 刘宿城, 栾李, 李龙, 洪涛, 刘晓东. 基于人工智能的直流微电网大信号稳定性评估方法研究[J]. 发电技术, 2025, 46(3): 496-507. |
| [13] | 闫正义, 赵康, 王凯. 基于强化学习的新型电力系统优化策略应用综述[J]. 发电技术, 2025, 46(3): 508-520. |
| [14] | 席磊, 王艺晓, 熊雅慧, 董璐. 基于改进深度极限学习机的电网虚假数据注入攻击定位检测[J]. 发电技术, 2025, 46(3): 521-531. |
| [15] | 于子涵, 王赫鸣, 王建凯, 朱胜强, 孟祥忠. 基于无人机巡检的输电线路绝缘子及其异物检测算法[J]. 发电技术, 2025, 46(3): 532-540. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||