发电技术 ›› 2025, Vol. 46 ›› Issue (5): 986-995.DOI: 10.12096/j.2096-4528.pgt.24034

• 发电及环境保护 • 上一篇    下一篇

125 MW超临界CO2燃煤发电机组烟气再循环对锅炉热力性能及经济性的影响分析

陈璟1, 刘辉2, 朱萌3, 王灿3, 陈磊3, 周敬3, 许凯3, 江龙3, 胡松3, 向军3   

  1. 1.国电电力发展股份有限公司,北京市 朝阳区 100101
    2.国家能源集团新能源技术研究院有限公司,北京市 朝阳区 100024
    3.煤燃烧与低碳利用全国重点实验室(华中科技大学),湖北省 武汉市 430074
  • 收稿日期:2024-08-04 修回日期:2024-11-02 出版日期:2025-10-31 发布日期:2025-10-23
  • 作者简介:陈璟(1970),男,硕士,正高级工程师,主要研究方向为热能工程,16032543@chnenergy.com.cn
    刘辉(1987),男,博士,高级工程师,研究方向为热力系统集成优化及新型储能等,calh1987@163.com
    朱萌(1996),男,博士研究生,研究方向为超临界二氧化碳燃煤锅炉燃烧机理与概念设计等,501305092@qq.com
    王灿(1999),男,硕士研究生,研究方向为超临界二氧化碳动力循环等,m202271281@hust.edu.cn
    陈磊(1997),男,博士研究生,研究方向为超临界二氧化碳储能等,2502084033@qq.com
    周敬(1994),男,博士,研究方向为超临界二氧化碳动力循环等,601156332@qq.com
    许凯(1986),男,博士,讲师,研究方向为超临界二氧化碳动力循环、燃煤锅炉智能灵活发电等,本文通信作者,xukai@hust.edu.cn
    江龙(1985),男,博士,副教授,研究方向为生物质废弃物高效洁净转化制氢/制生物燃料、燃煤锅炉智能灵活发电,jianglong@hust.edu.cn
    胡松(1973),男,博士,教授,主要研究方向为生物质热反应机理及新型应用技术、传统化石能源高效洁净反应机理及应用技术等,hssh30@163.com
    向军(1968),男,博士,教授,研究方向为锅炉高效低污染燃烧技术、新型动力循环系统、污染物生成机理与排放控制等,xiangjun@mail.hust.edu.cn
  • 基金资助:
    国家自然科学基金项目(U20A20303);国家能源集团科技项目(GJNY2030XDXM-19-10.1)

Analysis of Influence of Flue Gas Recirculation on Thermodynamic Performance and Economic Efficiency of 125 MW Supercritical CO2 Coal-Fired Power Generation Unit

Jing CHEN1, Hui LIU2, Meng ZHU3, Can WANG3, Lei CHEN3, Jing ZHOU3, Kai XU3, Long JIANG3, Song HU3, Jun XIANG3   

  1. 1.GD Power Development Co. , Ltd. , Chaoyang District, Beijing 100101, China
    2.CHN Energy Group New Energy Technology Research Institute Co. , Ltd. , Chaoyang District, Beijing 100024, China
    3.State Key Laboratory of Coal Combustion (Huazhong University of Science and Technology), Wuhan 430074, Hubei Province, China
  • Received:2024-08-04 Revised:2024-11-02 Published:2025-10-31 Online:2025-10-23
  • Supported by:
    National Natural Science Foundation of China(U20A20303);National Energy Group Technology Project(GJNY2030XDXM-19-10.1)

摘要:

目的 烟气再循环(flue gas recirculation,FGR)可有效解决超临界CO2 (supercritical carbon dioxide,S-CO2)锅炉炉膛壁面超温问题,选取合适的烟气再循环率是S-CO2锅炉设计的关键。为此,研究分析了不同烟气再循环率对锅炉热力性能与经济性的影响。 方法 以一台125 MW S-CO2燃煤机组锅炉为研究对象,在保持锅炉效率不变的情况下,采用热力计算方法对锅炉进行了不同烟气再循环率下的热力性能分析并提出了概念设计。在此基础上,进一步采用多级加权质量法和平准化度电成本对锅炉和机组的经济性进行了研究。 结果 随着烟气再循环率的增加,锅炉辐射受热面材料成本降低,其他受热面成本增加,锅炉本体总投资成本增加。然而,FGR会新增风机成本、燃料成本和额外成本。 结论 综合考虑安全性和经济性,推荐锅炉设计采用烟气再循环率为20%~30%。

关键词: 火力发电, 燃煤发电, 超临界二氧化碳(S-CO2), 锅炉, 经济分析, 烟气再循环(FGR), 热计算

Abstract:

Objectives Flue gas recirculation (FGR) can effectively mitigate the issue of high furnace wall temperature in supercritical carbon dioxide (S-CO2) boilers. The selection of an appropriate flue gas recirculation rate is critical for the design of S-CO2 boilers. Therefore, this study analyzes the influence of different flue gas recirculation rates on the thermodynamic performance and economic efficiency of the boilers. Methods A 125 MW S-CO2 coal-fired boiler is taken as the research object. The thermodynamic performance of the boiler under different flue gas recirculation rates is analyzed using a thermodynamic calculation method and the conceptual design is proposed, while keeping the boiler efficiency constant. On this basis, the economic efficiency of the boiler and the unit is further studied using the multistage weighted mass method and levelized cost of electricity. Results With increasing flue gas recirculation rate, the material cost of boiler’s radiant heating surface decreases, while the cost of other heating surfaces increases, leading to an increase in the total investment cost of the boiler. However, FGR results in additional costs for fans, fuel, and other extra expenses. Conclusions Considering both safety and economic efficiency, a flue gas recirculation rate of 20%-30% is recommended for optimal boiler design.

Key words: thermal power generation, coal-fired power generation, supercritical carbon dioxide (S-CO2), boiler, economic analysis, flue gas recirculation (FGR), thermal calculation

中图分类号: