发电技术 ›› 2025, Vol. 46 ›› Issue (4): 797-806.DOI: 10.12096/j.2096-4528.pgt.23172
任明炜, 邵聪, 施凯, 徐培凤, 孙宇新
收稿日期:
2024-10-19
修回日期:
2024-12-30
出版日期:
2025-08-31
发布日期:
2025-08-21
通讯作者:
邵聪
作者简介:
基金资助:
Mingwei REN, Cong SHAO, Kai SHI, Peifeng XU, Yuxin SUN
Received:
2024-10-19
Revised:
2024-12-30
Published:
2025-08-31
Online:
2025-08-21
Contact:
Cong SHAO
Supported by:
摘要:
目的 虚拟同步发电机(virtual synchronous generator,VSG)在接入中低压配电网时,线路阻抗会呈现阻感性,使得VSG输出功率存在强耦合,从而产生功率振荡,甚至造成VSG内部功率控制出现偏差,影响电能质量和输电稳定性。针对这些问题,提出了一种基于虚拟电容的改进型功率解耦策略。 方法 通过对VSG并网模型进行简化和小信号建模,分析功率耦合机理,获得耦合产生的关键因素。在此基础上,引入虚拟电容的概念,提出一种基于虚拟电容的改进型控制方法。最后,在MATLAB/Simulink平台下进行仿真,验证所提策略的有效性。 结果 虚拟电容的电容特性不仅能使系统运行过程更加稳定,还使输出电压基准得到修正,有效解决了因输出功率存在耦合而加剧振荡的问题。 结论 该控制策略削弱了因有功指令变化或者负载投切对无功功率产生的干扰,抑制了系统动态过程中功率的强耦合现象。
中图分类号:
任明炜, 邵聪, 施凯, 徐培凤, 孙宇新. 基于改进型虚拟阻抗的虚拟同步发电机动态功率解耦控制[J]. 发电技术, 2025, 46(4): 797-806.
Mingwei REN, Cong SHAO, Kai SHI, Peifeng XU, Yuxin SUN. Dynamic Power Decoupling Control of Virtual Synchronous Generator Based on Improved Virtual Impedance[J]. Power Generation Technology, 2025, 46(4): 797-806.
参数 | 数值 |
---|---|
udc /V | 800 |
ωN | 314.2 |
R1 /Ω | 0.2 |
L1 /mH | 5 |
R/Ω | 20 |
Rl /Ω | 1 |
Xl /mH | 0.2 |
J/(kg⋅m2) | 0.058 |
Dp /(N⋅m) | 5 |
Kp1 | 6.5 |
Kp2 | 1.2 |
Dq | 320 |
Cv /F | 0. 8 |
Lv /mH | 4 |
开关频率fs /kHz | 10 |
表1 VSG主电路及控制环主要参数
Tab. 1 Main parameters of VSG main circuits and control loops
参数 | 数值 |
---|---|
udc /V | 800 |
ωN | 314.2 |
R1 /Ω | 0.2 |
L1 /mH | 5 |
R/Ω | 20 |
Rl /Ω | 1 |
Xl /mH | 0.2 |
J/(kg⋅m2) | 0.058 |
Dp /(N⋅m) | 5 |
Kp1 | 6.5 |
Kp2 | 1.2 |
Dq | 320 |
Cv /F | 0. 8 |
Lv /mH | 4 |
开关频率fs /kHz | 10 |
[1] | 李小双,冷亚军,吴坚 .基于多目标投影寻踪模型的电力发展水平评价方法[J].电力科学与技术学报,2024,39(5):46-57. |
LI X S, LENG Y J, WU J .Evaluating method for power development level based on multi-objective projection pursuit model[J].Journal of Electric Power Science and Technology,2024,39(5):46-57. | |
[2] | LI D D, ZHU Q W, LIN S F,et al .A self-adaptive inertia and damping combination control of VSG to support frequency stability[J].IEEE Transactions on Energy Conversion,2017,32(1):397-398. doi:10.1109/tec.2016.2623982 |
[3] | 张玮,白恺,鲁宗相,等 .特大型新能源基地面临挑战及未来形态演化分析[J].全球能源互联网,2023,6(1):10-25. |
ZHANG W, BAI K, LU Z X,et al .Analysis of the challenges and future morphological evolution of super large-scale renewable energy base[J].Journal of Global Energy Interconnection,2023,6(1):10-25. | |
[4] | 杨继鑫,王久和,王勉,等 .基于无源控制的光储直流微网虚拟惯性控制策略研究[J].发电技术,2021,42(5):576-584. doi:10.12096/j.2096-4528.pgt.20080 |
YANG J X, WANG J H, WANG M,et al .Research on virtual inertial control strategy of DC microgrid with photovoltaic and storage system based on passivity-based control[J].Power Generation Technology,2021,42(5):576-584. doi:10.12096/j.2096-4528.pgt.20080 | |
[5] | 黎静华,朱振铎,兰飞 .基于协同控制理论的微电网频率控制[J].电力建设,2023,44(3):113-121. |
LI J H, ZHU Z D, LAN F .Microgrid frequency control based on cooperative control theory[J].Electric Power Construction,2023,44(3):113-121. | |
[6] | 朱子民,张锦芳,常清,等 .大规模新能源接入弱同步支撑柔直系统的送端自适应VSG控制策略[J].中国电力,2024,57(5):211-221. |
ZHU Z M, ZHANG J F, CHANG Q,et al .Adaptive VSG control strategy of sending end for large-scale renewable energy connected to weakly-synchronized support VSC-HVDC system[J].Electric Power,2024,57(5):211-221. | |
[7] | SHINTAI T, MIURA Y,ISE T .Oscillation damping of a distributed generator using a virtual synchronous generator[J].IEEE Transactions on Power Delivery,2014,29(2):668-676. doi:10.1109/tpwrd.2013.2281359 |
[8] | 李琳,张晓楠,李庚银,等 .考虑内外环交互作用的VSG并网振荡特性[J].电力建设,2024,45(4):66-76. |
LI L, ZHANG X N, LI G Y,et al .Characteristics of VSG grid-connected system oscillation considering the interaction between inner and outer loops[J].Electric Power Construction,2024,45(4):66-76. | |
[9] | 刘建伟,李学斌,刘晓鸥 .有源配电网中分布式电源接入与储能配置[J].发电技术,2022,43(3):476-484. doi:10.12096/j.2096-4528.pgt.21068 |
LIU J W, LI X B, LIU X O .Distributed power access and energy storage configuration in active distribution network[J].Power Generation Technology,2022,43(3):476-484. doi:10.12096/j.2096-4528.pgt.21068 | |
[10] | 闫来清,邓熙炜,赵喆,等 .基于自适应前馈补偿的VSG功率解耦控制策略[J].电力系统保护与控制,2024,52(24):64-73. |
YAN L Q, DENG X W, ZHAO Z,et al .VSG power decoupling control strategy based on adaptive feedforward compensation[J].Power System Protection and Control,2024,52(24):64-73. | |
[11] | 黄萌,舒思睿,李锡林,等 .面向同步稳定性的电力电子并网变流器分析与控制研究综述[J].电工技术学报,2024,39(19):5978-5994. |
HUANG M, SHU S R, LI X L,et al .A review of synchronization-stability-oriented analysis and control of power electronic grid-connected converters[J].Transactions of China Electrotechnical Society,2024,39(19):5978-5994. | |
[12] | 周贤正,荣飞,吕志鹏,等 .低压微电网采用坐标旋转的虚拟功率V/f下垂控制策略[J].电力系统自动化,2012,36(2):47-51. |
ZHOU X Z, RONG F, LV Z P,et al .A coordinate rotational transformation based virtual power V/f droop control method for low voltage microgrid[J].Automation of Electric Power Systems,2012,36(2):47-51. | |
[13] | 颜湘武,王月茹,王星海 .基于坐标变换的微网功率解耦及限幅控制策略[J].湖南大学学报(自然科学版),2016,43(8):85-91. |
YAN X W, WANG Y R, WANG X H .A coordinate transformation based power decoupling and restriction control strategy for microgrid[J].Journal of Hunan University (Natural Sciences),2016,43(8):85-91. | |
[14] | 宋兴龙,杨旭红,陈昊 .基于单一旋转角虚拟功率的虚拟同步发电机功率解耦策略[J].上海电力大学学报,2020,36(6):529-534. |
SONG X L, YANG X H, CHEN H .Virtual synchronous generator power decoupling strategy based on virtual power of single rotion angle[J].Journal of Shanghai University of Electric Power,2020,36(6):529-534. | |
[15] | 朱慧敏,苑舜 .基于功率解耦控制的虚拟同步发电机功率振荡抑制策略[J].智慧电力,2020,48(4):70-76. doi:10.1553/isr_fb048s70 |
ZHU H M, YUAN S .Power oscillation suppression strategy of virtual synchronous generator based on power decoupling control[J].Smart Power,2020,. doi:10.1553/isr_fb048s70 48(4):70-76. doi:10.1553/isr_fb048s70 | |
[16] | 李威,马美玲,孙伟卿 .考虑功率耦合的构网型多VSG系统频率振荡特性分析[J].电力工程技术,2025,44(2):44-54. |
LI W, MA M L, SUN W Q .Analysis of frequency oscillation characteristics in grid-forming multi-VSG systems considering power coupling[J].Electric Power Engineering Technology,2025,44(2):44-54. | |
[17] | 倪亮,刘桂英,苏乾坤,等 .孤岛微网VSG并联系统环流抑制策略[J].电测与仪表,2025,62(4):122-129. |
NI L, LIU G Y, SU Q K,et al .Circulating current suppression strategy for VSG parallel system with island microgrid[J].Electrical Measurement & Instrumentation,2025,62(4):122-129. | |
[18] | DONG N B, LI M F, CHANG X F,et al .Robust power decoupling based on feedforward decoupling and extended state observers for virtual synchronous generator in weak grid[J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2023,11(1):576-587. doi:10.1109/jestpe.2022.3207973 |
[19] | HU Y F, SHAO Y T, YANG R C,et al .A configurable virtual impedance method for grid-connected virtual synchronous generator to improve the quality of output current[J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2020,8(3):2404-2419. doi:10.1109/jestpe.2019.2918386 |
[20] | LI M X, WANG Y, LIU Y H,et al .Enhanced power decoupling strategy for virtual synchronous generator[J].IEEE Access,2020,8:73601-73613. doi:10.1109/access.2020.2987808 |
[21] | 张平,石健将,李荣贵,等 .低压微网逆变器的“虚拟负阻抗”控制策略[J].中国电机工程学报,2014,34(12):1844-1852. |
ZHANG P, SHI J J, LI R G,et al .A control strategy of “virtual negative” impedance for inverters in low-voltage microgrid[J].Proceedings of the CSEE,2014,34(12):1844-1852. | |
[22] | 颜湘武,崔森,贾焦心 .虚拟稳态同步负阻抗的VSG功率解耦策略[J].电力系统保护与控制,2020,48(18):102-113. |
YAN X W, CUI S, JIA J X .Virtual steady state synchronous negative impedance of a VSG power decoupling strategy[J].Power System Protection and Control,2020,48(18):102-113. | |
[23] | RATHNAYAKE D B, BAHRANI B .Multivariable control design for grid-forming inverters with decoupled active and reactive power loops[J].IEEE Transactions on Power Electronics,2023,38(2):1635-1649. doi:10.1109/tpel.2022.3213692 |
[24] | WEN T L, ZHU D H, ZOU X D,et al .Power coupling mechanism analysis and improved decoupling control for virtual synchronous generator[J].IEEE Transactions on Power Electronics,2021,36(3):3028-3041. doi:10.1109/tpel.2020.3017254 |
[25] | 戚军,李袁超,童辉,等 .基于动态虚拟电流前馈的预同步VSG功率二阶解耦策略[J].电网技术,2020,44(9):3556-3565. |
QI J, LI Y C, TONG H,et al .Second-order power decoupling control in pre-synchronized VSG based on dynamic virtual current feedforward control[J].Power System Technology,2020,44(9):3556-3565. |
[1] | 罗宗龙, 刘世林. 基于信息间隙决策理论鲁棒模型的户用微电网优化运行[J]. 发电技术, 2025, 46(4): 705-714. |
[2] | 卫广宇, 应笑冬, 姚延军, 杨小芳, 翁楚迪, 彭勇刚, 李海龙. 计及荷电状态的并网型直流微电网功率协同控制策略[J]. 发电技术, 2025, 46(4): 788-796. |
[3] | 刘宿城, 栾李, 李龙, 洪涛, 刘晓东. 基于人工智能的直流微电网大信号稳定性评估方法研究[J]. 发电技术, 2025, 46(3): 496-507. |
[4] | 刘忠, 黄彦铭, 朱光明, 邹淑云. 含风-光-电氢混合储能的多微电网系统容量优化配置方法[J]. 发电技术, 2025, 46(2): 240-251. |
[5] | 雷基林, 余林兴, 别玉, 徐稚博, 肖雨寒. 孤岛微电网能量管理系统研究综述[J]. 发电技术, 2025, 46(2): 370-385. |
[6] | 李文, 卜凡鹏, 张潇桐, 杨创东, 张静. 基于典型商业运营模式的含电-氢混合储能微电网系统优化运行方法[J]. 发电技术, 2024, 45(6): 1186-1200. |
[7] | 谭玲玲, 孙鹏, 郭沛璇, 李元芳, 吉兴全, 张玉敏. 含氢储能的微电网低碳-经济协同优化配置[J]. 发电技术, 2024, 45(5): 983-994. |
[8] | 杨捷, 孙哲, 苏辛一, 鲁刚, 元博. 考虑振荡型功率的直流微电网储能系统无互联通信网络的多目标功率分配方法[J]. 发电技术, 2024, 45(2): 341-352. |
[9] | 孙秋野, 姚葭, 王一帆. 从虚拟电厂到真实电量:虚拟电厂研究综述与展望[J]. 发电技术, 2023, 44(5): 583-601. |
[10] | 徐立, 孙飞虎, 李钧, 张强强. 抛物面槽式太阳能集热器热损失因素研究[J]. 发电技术, 2023, 44(2): 229-234. |
[11] | 霍龙, 张誉宝, 陈欣. 人工智能在分布式储能技术中的应用[J]. 发电技术, 2022, 43(5): 707-717. |
[12] | 刘建伟, 李学斌, 刘晓鸥. 有源配电网中分布式电源接入与储能配置[J]. 发电技术, 2022, 43(3): 476-484. |
[13] | 卢昕, 陈众励, 李辉. 基于自抗扰控制的直流微电网双向Buck-Boost变换器控制策略研究[J]. 发电技术, 2021, 42(2): 193-200. |
[14] | 陆永耕, 李建刚, 黄禹铭, 李柏玉. 高渗透率分布式电源控制方法[J]. 发电技术, 2021, 42(1): 103-114. |
[15] | 李立新, 周宇昊, 郑文广. 能源转型背景下分布式能源技术发展前景[J]. 发电技术, 2020, 41(6): 571-577. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||