发电技术 ›› 2022, Vol. 43 ›› Issue (3): 452-461.DOI: 10.12096/j.2096-4528.pgt.22061
冯伟忠1,2, 李励1,2
收稿日期:
2022-03-20
出版日期:
2022-06-30
发布日期:
2022-07-06
作者简介:
Weizhong FENG1,2, Li LI1,2
Received:
2022-03-20
Published:
2022-06-30
Online:
2022-07-06
摘要:
煤电机组基于现有相关技术体系,可以通过“三步走”减碳战略,即通过技术减碳(节能降耗和深度调峰)实现低碳化,通过燃料脱碳实现零碳化,通过烟气脱碳实现负碳化,逐步实现转型,成为具备煤电机组可靠、可调和稳定等所有优点,同时又解决其高碳排放这一痛点的优质新能源火电。生物质火电作为一种零碳新能源,可以同时破解“风光新能源加电储能无法真正保障电网安全”和“传统煤电稳定可调但碳排放强度过高”这2个困局,成为我国未来低碳电力供应的中坚力量,为尽早实现以新能源为主体的新型电力系统作出其历史性贡献。
中图分类号:
冯伟忠, 李励. “双碳”目标下煤电机组低碳、零碳和负碳化转型发展路径研究与实践[J]. 发电技术, 2022, 43(3): 452-461.
Weizhong FENG, Li LI. Research and Practice on Development Path of Low-carbon, Zero-carbon and Negative Carbon Transformation of Coal-fired Power Units Under “Double Carbon” Targets[J]. Power Generation Technology, 2022, 43(3): 452-461.
图 2 现役煤电机组实际煤耗水平(纯凝机组)与达标目标值之间的差距A—6年行动计划60万kW机组目标值;B—100万kW超超临界湿冷机组;C—60万kW超超临界湿冷机组;D—60万kW超临界湿冷机组;E—60万kW亚临界湿冷机组;F—6年行动计划30万kW机组目标值;G—30万kW亚临界湿冷机组。
Fig. 2 Gap between actual coal consumption rate level (without heat supply) of existing coal-fired power units and target value
方案 | 典型节能量/ [g⋅(kW⋅h)-1] | 典型成本/万元 | 单位节能量成本/ [万元⋅g-1⋅(kW⋅h)-1] | 综合性价比 |
---|---|---|---|---|
汽轮机通流部分改造 | 10 | 5 500 | 550 | 理论性价比高,实际普遍收益快速衰减,导致 实际单位投资翻倍甚至无法回本 |
跨代升级改造为准二次再热机组 | 25 | 85 000 | 3 400 | 投资过高,性价比很低;若考虑效率衰减, 实际性价比更低 |
保持压力不变,主、再热汽温升至566 ℃ | 15 | 20 000 | 1 330 | 性价比较低,若考虑效率衰减,实际性价比更低 |
高温亚临界综合升级改造 | 35 | 35 000 (29 000) | 1 000 (829) | 性价比较好,能长期保效,大幅延寿且同时有 深调能力,综合性价比高 |
表 1 典型30万kW亚临界机组节能降耗技术的性价比比较
Tab. 1 Cost performance comparison between typical energy-saving technologies of 300 MW subcritical coal-fired power units
方案 | 典型节能量/ [g⋅(kW⋅h)-1] | 典型成本/万元 | 单位节能量成本/ [万元⋅g-1⋅(kW⋅h)-1] | 综合性价比 |
---|---|---|---|---|
汽轮机通流部分改造 | 10 | 5 500 | 550 | 理论性价比高,实际普遍收益快速衰减,导致 实际单位投资翻倍甚至无法回本 |
跨代升级改造为准二次再热机组 | 25 | 85 000 | 3 400 | 投资过高,性价比很低;若考虑效率衰减, 实际性价比更低 |
保持压力不变,主、再热汽温升至566 ℃ | 15 | 20 000 | 1 330 | 性价比较低,若考虑效率衰减,实际性价比更低 |
高温亚临界综合升级改造 | 35 | 35 000 (29 000) | 1 000 (829) | 性价比较好,能长期保效,大幅延寿且同时有 深调能力,综合性价比高 |
1 | 李延和,杨立滨,郝丽丽,等 .基于改进样板机法的风光互补新能源电站容量配比优化[J].电力工程技术,2022,41(2):224-233. doi:10.12158/j.2096-3203.2022.02.030 |
LI Y H, YANG L B, HAO L L,et al .Capacity ratio optimization of wind-solar hybrid new energy power station based on improved model-generator method[J].Electric Power Engineering Technology,2022,41(2):224-233. doi:10.12158/j.2096-3203.2022.02.030 | |
2 | 文劲宇,周博,魏利屾 .中国未来电力系统储电网初探[J].电力系统保护与控制,2022,50(7):1-10. |
WEN J Y, ZHOU B, WEI L S .Preliminary study on an energy storage grid for future power system in China[J].Power System Protection and Control,2022,50(7):1-10. | |
3 | 王伟胜,林伟芳,何国庆,等 .美国得州2021年大停电事故对我国新能源发展的启示[J].中国电机工程学报,2021,41(12):4033-4043. doi:10.13334/j.0258-8013.pcsee.210749 |
WANG W S, LIN W F, HE G Q,et al .Enlightenment of 2021 Texas blackout to the renewable energy development in China[J].Proceedings of the CSEE,2021,41(12):4033-4043. doi:10.13334/j.0258-8013.pcsee.210749 | |
4 | 谢国辉,李娜娜,元博 .我国新能源开发路线图分析方法及模型[J].发电技术,2020,41(6):631-637. doi:10.12096/j.2096-4528.pgt.19174 |
XIE G H, LI N N, YUAN B .Analysis methods and model of new energy developing roadmap in China[J].Power Generation Technology,2020,41(6):631-637. doi:10.12096/j.2096-4528.pgt.19174 | |
5 | 丁立,乔颖,鲁宗相,等 .高比例风电对电力系统调频指标影响的定量分析[J].电力系统自动化,2014,38(14):1-8. doi:10.7500/AEPS20130810001 |
DING L, QIAO Y, LU Z X,et al .Impact on frequency regulation of power system from wind power with high penetration[J].Automation of Electric Power Systems,2014,38(14):1-8. doi:10.7500/AEPS20130810001 | |
6 | 何世恩,董新洲 .大规模风电机组脱网原因分析及对策[J].电力系统保护与控制,2012,40(1):131-137. doi:10.7667/j.issn.1674-3415.2012.01.023 |
HE S E, DONG X Z, CHAI Y T .Cause analysis on large-scale wind turbine tripping and its countermeasures[J].Power System Protection and Control,2012,40(1):131-137. doi:10.7667/j.issn.1674-3415.2012.01.023 | |
7 | 中国能源报 .风电大基地带来并网新挑战,当年大规模脱网事故会否重演?[EB/OL].(2020-05-19)[2022-03-17].. |
8 | CUI R Y, NATHAN H, CUI D Y,et al .A plant-by-plant strategy for high-ambition coal power phaseout in China[EB/OL].(2021-03-16)[2022-03-17]. . |
9 | 周宏春,李长征,周春 .我国能源领域科学低碳转型研究与思考[J].中国煤炭,2022,48(1):2-9. doi:10.3969/j.issn.1006-530X.2022.01.002 |
ZHOU H C, LI C Z, ZHOU C .Research and thinking on scientific low-carbon transformation in China’s energy field[J].China Coal,2022,48(1):2-9. doi:10.3969/j.issn.1006-530X.2022.01.002 | |
10 | 朱法华,徐静馨,潘超,等 .煤电在碳中和目标实现中的机遇与挑战[J].电力科技与环保,2022,38(2):79-86. |
ZHU F H, XU J X, PAN C,et .al.Opportunities and challenges of coal power industry in the achievement of carbon neutrality goal[J].Electric Power Technology and Environmental Protection,2022,38(2):79-86. | |
11 | 冷喜武 .美国得州2021轮停事故分析及其对中国电网改革的启示[J].发电技术,2021,42(2):151-159. doi:10.12096/j.2096-4528.pgt.21027 |
LENG X W .The analysis of 2021 Texas’ rotating blackout incident and its enlightenment to the reform of China power grid[J].Power Generation Technology,2021,42(2):151-159. doi:10.12096/j.2096-4528.pgt.21027 | |
12 | 刘文胜,吕洪坤,童家麟,等 .600 MW亚临界锅炉深度调峰动态试验研究[J].锅炉技术,2021,52(2):19-24. doi:10.3969/j.issn.1672-4763.2021.02.004 |
LIU W S, LYU H K, TONG J L,et al .Experimental study on 30% rated depth peak-load for a 600 MW subcritical boiler[J].Boiler Technology,2019,50(4):59-65. doi:10.3969/j.issn.1672-4763.2021.02.004 | |
13 | 金利鹏,赵佳骏,吴剑波,等 .330 MW亚临界机组深度调峰运行优化研究[J].节能技术,2021,39(2):127-131. doi:10.3969/j.issn.1002-6339.2021.02.006 |
JIN L P, ZHAO J J, WU J B, et al .Research on the deep peaking optimization operation of 330 MW subcritical unit[J].Energy Conservation Technology,2021,39(2):127-131. doi:10.3969/j.issn.1002-6339.2021.02.006 | |
14 | 刘爱国,张健赟,赵树成,等 .300 MW和600 MW等级汽轮机通流改造经济性研究[J].能源工程,2021(6):69-73. |
LIU A G, ZHANG J Y, ZHAO S C,et .al.Economic study on flow passage retrofits of 300 MW-class and 600 MW-class steam turbines[J].Energy Engineering,2021(6):69-73. | |
15 | 谭锐,徐星,邵峰,等 .300 MW等级亚临界汽轮机通流改造综述[J].汽轮机技术,2017,59(4):291-294. doi:10.3969/j.issn.1001-5884.2017.04.015 |
TAN R, XU X, SHAO F,et al .Review of the flow path retrofit of 300 MW class subcritical steam turbine[J].Turbine Technology,2017,59(4):291-294. doi:10.3969/j.issn.1001-5884.2017.04.015 | |
16 | 常征,张振华,赵文波,等 .亚临界机组提升参数与跨代升级改造方案比较[J].发电与空调,2017,38(1):21-24. doi:10.3969/J.ISSN.2095-3429.2017.01.005 |
CHANG Z, ZHANG Z H, ZHAO W B,et al .Upgrade scheme comparison between parameter-increase and cross-genera-tion for subcritical unit[J].Power Generation & Air Condition,2017,38(1):21-24. doi:10.3969/J.ISSN.2095-3429.2017.01.005 | |
17 | FENG W Z, LI L .The high-temperature retrofit research and application of subcritical units[J].Fuel,2020,268:117167. doi:10.1016/j.fuel.2020.117167 |
18 | FENG W Z .Developing green,highly efficient coal-fired power technologies[C]//International Conference on ASME Power Conference Collocated with the ASME International Conference on Energy Sustainability.San Diego,California,USA:ASME,2015:49551. doi:10.1115/power2015-49551 |
19 | FENG W Z .Generalized regeneration theory and its energy saving and emission reduction effects on coal-fired power generation[C]//ASME Power Conference Collocated with the ASME International Conference on Energy Sustainability & the ASME International Conference on Fuel Cell Science.Charlotte,North Carolina,USA:ASME,2016:59166. doi:10.1115/power2016-59166 |
20 | 刘云锋,李宇峰,王健,等 .汽轮机深度调峰的水蚀问题研究[J].发电技术,2021,42(4):473-479. doi:10.12096/j.2096-4528.pgt.21012 |
LIU Y F, LI Y F, WANG J,et al .Study on water erosion in deep peak shaving of steam turbine[J].Power Generation Technology,2021,42(4):473-479. doi:10.12096/j.2096-4528.pgt.21012 | |
21 | 李树明,刘青松,朱小东,等 .350 MW超临界热电联产机组灵活性改造分析[J].发电技术,2018,39,183(5):449-454. doi:10.12096/j.2096-4528.pgt.2018.069 |
LI S M, LIU Q S, ZHU X D,et al .Flexibility transformation analysis of 350 MW supercritical cogeneration unit[J].Power Generation Technology,2018,39(5):449-454. doi:10.12096/j.2096-4528.pgt.2018.069 | |
22 | 刘忠秋,张国柱,邱寅晨,等 .热电联产机组集成热泵实现热电解耦的潜力与能耗特性分析[J].发电技术,2019,40(3):253-257. doi:10.12096/j.2096-4528.pgt.19073 |
LIU Z Q, ZHANG G Z, QIU Y C,et al .Analyses on heat-power decoupling potential and energy consumption characteristics for CHP plant integrated with heat pump[J].Power Generation Technology,2019,40(3):253-257. doi:10.12096/j.2096-4528.pgt.19073 | |
23 | 王新居 .空预器堵塞原因分析及预防措施[J].发电与空调,2015,36(6):54-56. doi:10.3969/J.ISSN.2095-3429.2015.06.016 |
WANG X J .Blocking reason analysis and preventive measures of air preheater[J].Power Generation & Air Condition,2015,36(6):54-56. doi:10.3969/J.ISSN.2095-3429.2015.06.016 | |
24 | 王云鹏 .锅炉结焦原因分析及对策[J].中国设备工程,2020(15):165-166. doi:10.3969/j.issn.1671-0711.2020.15.082 |
WANG Y P .Cause analysis and countermeasures of boiler coking[J].China Plant Engineering,2020(15):165-166. doi:10.3969/j.issn.1671-0711.2020.15.082 | |
25 | 陈洪 .电厂锅炉结焦原因与预防性措施探讨[J].中国设备工程,2021(24):187-188. doi:10.3969/j.issn.1671-0711.2021.24.117 |
CHEN H .Discussion on coking causes and preventive measures of boiler in power plant[J].China Plant Engineering,2021(24):187-188. doi:10.3969/j.issn.1671-0711.2021.24.117 | |
26 | FENG W Z .China’s national demonstration project achieves around 50% net efficiency with 600 ℃ class material[J].Fuel,2018,223:334-353. doi:10.1016/j.fuel.2018.01.060 |
27 | 王婷,郭馨,殷亚宁,等 .浅析700 ℃超超临界锅炉关键技术[J].电站系统工程,2021,37(6):15-17. |
WANG T, GUO X, YIN Y N,et .al.Discussion on key technologies of 700 ℃ ultra supercritical boiler[J].Power System Engineering,2021,37(6):15-17. | |
28 | 毛健雄,郭慧娜,吴玉新 .中国煤电低碳转型之路:国外生物质发电政策/技术综述及启示[J].洁净煤技术,2022,28(3):1-11. |
MAO J X, GUO H N, WU Y X .Road to low-carbon transformation of coal power in China:a review of biomass co-firing policies and technologies for coal power abroad and its inspiration on biomass utilization[J].Clean Coal Technology,2022,28(3):1-11. | |
29 | 张东旺,范浩东,赵冰,等 .国内外生物质能源发电技术应用进展[J].华电技术,2021,43(3):70-75. doi:10.3969/j.issn.1674-1951.2021.03.011 |
ZHANG D W, FAN H D, ZHAO B,et al .Development of biomass power generation technology at home and abroad[J].Huadian Technology,2021,43(3):70-75. doi:10.3969/j.issn.1674-1951.2021.03.011 | |
30 | 兰凤春,李晓宇,龙辉 .欧洲大型燃煤锅炉耦合生物质发电技术综述[J].华电技术,2020,42(10):88-94. doi:10.3969/j.issn.1674-1951.2020.10.012 |
LAN F C, LI X Y, LONG H .Review of biomass power generation technology coupled with large coal‑fired boilers in Europe[J].Huadian Technology,2020,42(10):88-94. doi:10.3969/j.issn.1674-1951.2020.10.012 | |
31 | Daily Energy .英国发电厂接近全面弃煤[J].中外能源,2020,25(7):98-99. |
Daily Energy .UK power plants close to full coal abandonment[J].Sino-Global Energy,2020,25(7):98-99. | |
32 | 王一坤,徐晓光,王栩,等 .燃煤机组多源耦合发电技术及应用现状[J].热力发电,2022,51(1):60-68. |
WANG Y K, XU X G, WANG X,et al .Multi-source coupling coal-fired power generating technology and its application status[J].Thermal Power Generation,2022,51(1):60-68. | |
33 | 余东津,端木琳 .光伏光热系统提高效率的方法[J].区域供热,2019(1):94-102. |
YU D J, DUANMU L .Method for improving efficiency of photovoltaic photothermal system[J].District Heating,2019(1):94-102. | |
34 | 曹晓风,孙波,陈化榜,等 .我国边际土地产能扩增和生态效益提升的途径与研究进展[J].中国科学院院刊,2021,36(3):336-348. |
CAO X F, SUN B, CHEN H B,et al .Approaches and research progresses of marginal land productivity expansion and ecological benefit improvement in China[J].Bulletin of Chinese Academy of Sciences,2021,36(3):336-348. | |
35 | 魏宁,姜大霖,刘胜男,等 .国家能源集团燃煤电厂CCUS改造的成本竞争力分析[J].中国电机工程学报,2020,40(4):1258-1265. doi:10.13334/j.0258-8013.pcsee.190381 |
WEI N, JIANG D L, LIU S N,et al .Cost competitiveness analysis of retrofitting CCUS to coalfired power plants[J].Proceedings of the CSEE,2020,40(4):1258-1265. doi:10.13334/j.0258-8013.pcsee.190381 | |
36 | 姜大霖,杨琳,魏宁,等 .燃煤电厂实施CCUS改造适宜性评估:以原神华集团电厂为例[J].中国电机工程学报,2019,39(19):5835-5842. doi:10.13334/j.0258-8013.pcsee.190379 |
JIANG D L, YANG L, WEI N,et al .Suitability of retrofitting CCUS to existing coal-fired power plants:a case study of former Shenhua Group[J].Proceedings of the CSEE,2019,39(19):5835-5842. doi:10.13334/j.0258-8013.pcsee.190379 | |
37 | 电力规划设计总院 .中国低碳化发电技术创新发展年度报告2020[M].北京:人民日报出版社,2021. doi:10.30919/esee8c635 |
China Electric Power Planning & Engineering Institute .Annual report on China low-carbon power generation technology innovation and development[M].Beijing:People’s Daily Press,2021. doi:10.30919/esee8c635 | |
38 | 王月明,姚明宇,张一帆,等 .煤电的低碳化发展路径研究[J].热力发电,2022,51(1):11-20. |
WANG Y M, YAO M Y, ZHANG Y F,et al .Study on low-carbon development path of coal-fired power generation[J].Thermal Power Generation,2022,51(1):11-20. |
[1] | 丁湧. 1 000 MW超超临界燃煤锅炉深度调峰研究[J]. 发电技术, 2024, 45(3): 382-391. |
[2] | 代华松, 浦绍旭, 柴国旭, 金李, 陈为平, 解明亮. 350 MW超临界流化床机组深度调峰研究与应用[J]. 发电技术, 2024, 45(3): 401-411. |
[3] | 张思海, 李超然, 万广亮, 刘印学, 徐海楠, 黄中, 杨海瑞. 330 MW 循环流化床锅炉深度调峰技术[J]. 发电技术, 2024, 45(2): 199-206. |
[4] | 郑淇薇, 王华霆, 陈衡, 潘佩媛, 徐钢. 深度调峰背景下火电机组热电解耦技术路径对比分析[J]. 发电技术, 2024, 45(2): 207-215. |
[5] | 贾志军, 范伟, 任少君, 魏唐斌. 600 MW亚临界机组长时间深度调峰燃烧稳定性研究[J]. 发电技术, 2024, 45(2): 216-225. |
[6] | 李展, 杨振勇, 刘磊, 陈振山, 季卫鸣, 洪烽. 火电机组深度调峰工况下炉侧蓄热系数对一次调频能力的影响分析[J]. 发电技术, 2024, 45(2): 226-232. |
[7] | 杨正, 孙亦鹏, 温志强, 程亮, 李战国. 深度调峰工况下超临界机组的干湿态转换策略研究[J]. 发电技术, 2024, 45(2): 233-239. |
[8] | 王若为, 李音璇, 葛维春, 张诗钽, 刘闯, 楚帅. 沙漠光伏电能外送技术综述[J]. 发电技术, 2024, 45(1): 32-41. |
[9] | 郭滔, 于海洋, 冯海波, 袁汉川, 田兵, 杨玉杰, 赵元宾, 赵倩. 气侧均流装置对冷却三角单元流动传热特性影响的实验研究[J]. 发电技术, 2024, 45(1): 79-89. |
[10] | 彭道刚, 税纪钧, 王丹豪, 赵慧荣. “双碳”背景下虚拟电厂研究综述[J]. 发电技术, 2023, 44(5): 602-615. |
[11] | 张宁, 朱昊, 杨凌霄, 胡存刚. 考虑可再生能源消纳的多能互补虚拟电厂优化调度策略[J]. 发电技术, 2023, 44(5): 625-633. |
[12] | 刘含笑. 双碳背景下电除尘器的节能减碳分析[J]. 发电技术, 2023, 44(5): 738-744. |
[13] | 曹冬惠, 杜冬梅, 何青. 氢储能安全及其检测技术综述[J]. 发电技术, 2023, 44(4): 431-442. |
[14] | 许洪华, 邵桂萍, 鄂春良, 郭金东. 我国未来能源系统及能源转型现实路径研究[J]. 发电技术, 2023, 44(4): 484-491. |
[15] | 张全斌, 周琼芳. 基于“双碳”目标的中国火力发电技术发展路径研究[J]. 发电技术, 2023, 44(2): 143-154. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||