发电技术 ›› 2021, Vol. 42 ›› Issue (6): 643-652.DOI: 10.12096/j.2096-4528.pgt.21061
• 太阳能热发电技术 • 下一篇
王立1(), 张智1, 施瑶璐1(
), 徐超2(
), 孙杰1,*(
)
收稿日期:
2021-05-20
出版日期:
2021-12-31
发布日期:
2021-12-23
通讯作者:
孙杰
作者简介:
王立(1996), 男, 硕士研究生, 主要研究方向为太阳能光热利用技术, 15188371956@163.com基金资助:
Li WANG1(), Zhi ZHANG1, Yaolu SHI1(
), Chao XU2(
), Jie SUN1,*(
)
Received:
2021-05-20
Published:
2021-12-31
Online:
2021-12-23
Contact:
Jie SUN
Supported by:
摘要:
介绍了抛物槽式太阳能集热器的数值仿真研究进展,特别是对集热管内流场与聚光器外流场所涉及的数值仿真研究进行了综述。在集热管内流场研究中,传热介质类型、聚光特性对集热性能与热应力分布影响显著,尤其在水/蒸汽介质集热回路中,特有的气–液两相流叠加管外非均匀热流密度分布有可能导致严重的集热管热应力弯曲变形问题。在聚光器外流场研究中,由于实际风速较大,超薄镜片的结构强度较低,聚光器承受风载变形,致使光学效率损失,甚至会导致抛物槽式集热器结构失效,直接影响整个集热镜场正常工作。
中图分类号:
王立, 张智, 施瑶璐, 徐超, 孙杰. 基于数值仿真的抛物槽式太阳能集热器研究进展[J]. 发电技术, 2021, 42(6): 643-652.
Li WANG, Zhi ZHANG, Yaolu SHI, Chao XU, Jie SUN. Research Progress of Parabolic Trough Solar Collector Based on Numerical Simulation[J]. Power Generation Technology, 2021, 42(6): 643-652.
1 | 孙蔚, 申洪, 侯金鸣, 等. 欧洲能源电力发展路线研究[J]. 发电技术, 2021, 42 (1): 94- 102. |
SUN W , SHEN H , HOU J M , et al. Research on European roadmap for energy and electrical technology[J]. Power Generation Technology, 2021, 42 (1): 94- 102. | |
2 | 申洪, 周勤勇, 刘耀, 等. 碳中和背景下全球能源互联网构建的关键技术及展望[J]. 发电技术, 2021, 42 (1): 8- 19. |
SHEN H , ZHOU Q Y , LIU Y , et al. Key technologies and prospects for the construction of global energy internet under the background of carbon neutral[J]. Power Generation Technology, 2021, 42 (1): 8- 19. | |
3 | 张哲旸, 巨星, 潘信宇, 等. 太阳能光伏-光热复合发电技术及其商业化应用[J]. 发电技术, 2020, 41 (3): 220- 230. |
ZHANG Z Y , JU X , PAN X Y , et al. Photovoltaic/concentrated solar power hybrid technology and its commercial application[J]. Power Generation Technology, 2020, 41 (3): 220- 230. | |
4 | 刘尧东, 张燕平, 万亮, 等. 基于Al2O3纳米流体的槽式太阳能热发电集热器传热建模及性能分析[J]. 发电技术, 2021, 42 (2): 230- 237. |
LIU Y D , ZHANG Y P , WAN L , et al. Heat transfer modelling and performance analysis of trough solar thermal power collector based on Al2O3 nanofluid[J]. Power Generation Technology, 2021, 42 (2): 230- 237. | |
5 |
CHENG Z D , HE Y L , CUI F Q , et al. Numerical simulation of a parabolic trough solar collector with nonuniform solar flux conditions by coupling FVM and MCRT method[J]. Sol Energy, 2012, 86 (6): 1770- 1784.
DOI |
6 |
RAY S , TRIPATHY A K , SAHOO S S , et al. Performance analysis of receiver of parabolic trough solar collector: effect of selective coating, vacuum and semitransparent glass cover[J]. International Journal of Energy Research, 2018, 42 (13): 4235- 4249.
DOI |
7 |
TELES M D P R , ISMAILl K A R , ARABKOOHSAR A . A new version of a low concentration evacuated tube solar collector: optical and thermal investigation[J]. Solar Energy, 2019, 180, 324- 339.
DOI |
8 |
BELLOS E , KORRES D , TZIVANIDIS C , et al. Design, simulation and optimization of a compound parabolic collector[J]. Sustainable Energy Technologies and Assessments, 2016, 16, 53- 63.
DOI |
9 |
BELLOS E , TZIVANIDIS C , SAID Z . A systematic parametric thermal analysis of nanofluid-based parabolic trough solar collectors[J]. Sustainable Energy Technologies and Assessments, 2020, 39, 100714.
DOI |
10 |
YILMAZ I H , MWESIGYE A , GOKSU TT . Enhancing the overall thermal performance of a large aperture parabolic trough solar collector using wire coil inserts[J]. Sustainable Energy Technologies and Assessments, 2020, 39, 100696.
DOI |
11 |
ANTONAIA A , CASTALDO A , ADDONIZIO M L , et al. Stability of W-Al2O3 cermet based solar coating for receiver tube operating at high temperature[J]. Solar Energy Materials and Solar Cells, 2010, 94 (10): 1604- 1611.
DOI |
12 |
GAO X H , GUO H X , ZHOU T H , et al. Optical properties and failure analysis of ZrC-ZrOx ceramic based spectrally selective solar absorbers deposited at a high substrate temperature[J]. Solar Energy Materials and Solar Cells, 2018, 176, 93- 99.
DOI |
13 |
LIU J , LEI D , LI Q . Vacuum lifetime and residual gas analysis of parabolic trough receiver[J]. Renew Energy, 2016, 86, 949- 954.
DOI |
14 |
ESPINOSA-RUEDA G , NAVARRO HERMOSO J L , MARTÍNEZ-SANZ N , et al. Vacuum evaluation of parabolic trough receiver tubes in a 50 MW concentrated solar power plant[J]. Solar Energy, 2016, 139, 36- 46.
DOI |
15 | 赵晴, 赵力, 王志, 等. 槽式太阳能集热管非均匀受热研究[J]. 太阳能学报, 2018, 39 (6): 1526- 1532. |
ZHAO Q , ZHAO L , WANG Z . Study of non-uniform heating of trough solar collector[J]. Acta Energiae Solaris Sinica, 2018, 39 (6): 1526- 1532. | |
16 | 王金平. 槽式太阳能光热电站关键技术及运行特性的研究[D]. 南京: 东南大学, 2017. |
WANG J P. Research on the key technologies and operational characteristics of parabolic trough solar power plant[D]. Nanjing: Southeast University, 2017. | |
17 |
LEI D Q , FU X Q , REN Y C , et al. Temperature and thermal stress analysis of parabolic trough receivers[J]. Renew Energy, 2019, 136, 403- 413.
DOI |
18 |
MWESIGYE A , BELLO-OCHENDE T , MEYER J P . Heat transfer and entropy generation in a parabolic trough receiver with wall-detached twisted tape inserts[J]. International Journal of Thermal Sciences, 2016, 99, 238- 257.
DOI |
19 | BELLOS E , TZIVANIDIS C , TSIMPOUKIS D . Multi-criteria evaluation of parabolic trough collector with internally finned absorbers[J]. Applied Energy, 2017, 205, 540- 561. |
20 | WANG Y J , LIU Q B , LEI J , et al. A three-dimensional simulation of a parabolic trough solar collector system using molten salt as heat transfer fluid[J]. Applied Thermal Engineering, 2014, 70 (1): 462- 476. |
21 | 王艳娟. 聚光太阳能与热化学反应耦合的发电系统研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2015. |
WANG Y J. Investigation on multiphysics coupling processes and system integration of the concentrated solar thermal energy[D]. Beijing: Chinese Academy of Sciences (Institute of Engineering Thermophysics), 2015. | |
22 | ROLDÁN M I , VALENZUELA L , ZARZA E . Thermal analysis of solar receiver pipes with superheated steam[J]. Applied Energy, 2013, 103, 73- 84. |
23 | LI L , SUN J , LI Y S . Thermal load and bending analysis of heat collection element of direct-steam-generation parabolic-trough solar power plant[J]. Applied Thermal Engineering, 2017, 127, 1530- 1542. |
24 | HACHICHA A A , RODRÍGUEZ I , GHENAI C . Thermo-hydraulic analysis and numerical simulation of a parabolic trough solar collector for direct steam generation[J]. Applied Energy, 2018, 214, 152- 165. |
25 | WANG L , ZHANG Z , SUN J , et al. A trans-dimensional multi-physics coupled analysis method for direct-steam-generation parabolic-trough loop[J]. Applied Thermal Engineering, 2021, 193, 117011. |
26 | MWESIGYE A , HUAN Z , MEYER J P . Thermodynamic optimization of the performance of a parabolic trough receiver using synthetic oil-Al2O3 nanofluid[J]. Applied Energy, 2015, 156, 398- 412. |
27 | HACHICHA A A , SAID Z , RAHMAN S M A , et al. On the thermal and thermodynamic analysis of parabolic trough collector technology using industrial-grade MWCNT based nanofluid[J]. Renew Energy, 2020, 161, 1303- 1317. |
28 | ALLOUHI A , AMINE M B , SAIDUR R , et al. Energy and exergy analyses of a parabolic trough collector operated with nanofluids for medium and high temperature applications[J]. Energy Conversion and Management, 2018, 155, 201- 217. |
29 | MINEA A A , EL-MAGHLANY W M . Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: recent findings and numerical comparison[J]. Renew Energy, 2018, 120, 350- 364. |
30 | GOOD P , AMBROSETTI G , PEDRETTI A , et al. A 1.2 MWth solar parabolic trough system based on air as heat transfer fluid at 500℃: engineering design, modelling, construction, and testing[J]. Solar Energy, 2016, 139, 398- 411. |
31 | QIU Y , LI M J , HE Y L , et al. Thermal performance analysis of a parabolic trough solar collector using supercritical CO2 as heat transfer fluid under non-uniform solar flux[J]. Applied Thermal Engineering, 2017, 115, 1255- 1265. |
32 | 吴闽强. 液态铅铋槽式太阳能集热管设计及性能分析[D]. 合肥: 中国科学技术大学, 2018. |
WU M Q. Design and analysis of parabolic trough solar collector with lead-bismuth eutectic[D]. Hefei: University of Science and Technology of China, 2018. | |
33 | GONG B , WANG Z , LI Z , et al. Field measurements of boundary layer wind characteristics and wind loads of a parabolic trough solar collector[J]. Solar Energy, 2012, 86 (6): 1880- 1898. |
34 | NAEENI N , YAGHOUBI M . Analysis of wind flow around a parabolic collector (1) fluid flow[J]. Renewable Energy, 2007, 32 (11): 1898- 1916. |
35 | ZEMLER M K , BOHL G , RIOS O , et al. Numerical study of wind forces on parabolic solar collectors[J]. Renewable Energy, 2013, 60, 498- 505. |
36 | PAETZOLD J , COCHARD S , VASSALLO A , et al. Wind engineering analysis of parabolic trough solar collectors: the effects of varying the trough depth[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 135, 118- 128. |
37 | ANDRE M , PENTEK M , BLETZINGER K U , et al. Aeroelastic simulation of the wind-excited torsional vibration of a parabolic[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 165, 67- 78. |
38 | HACHICHA A A , RODRÍGUEZ I , CASTRO J , et al. Numerical simulation of wind flow around a parabolic trough solar collector[J]. Applied Energy, 2013, 107, 426- 437. |
39 | MIER-TORRECILLA M , HERRERA E , DOBLARÉ M . Numerical calculation of wind loads over solar collectors[J]. Energy Procedia, 2014, 49, 163- 173. |
40 | ANDRE M , MIER-TORRECILLA M , WÜCHNER R . Numerical simulation of wind loads on a parabolic trough solar collector using lattice Boltzmann and finite element methods[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 146, 185- 194. |
41 | ZHANG Z , SUN J , WANG L , et al. Multiphysics-coupled study of wind load effects on optical performance of parabolic trough collector[J]. Solar Energy, 2020, 207, 1078- 1087. |
42 | RIFFELMANNA K , RICHERTA T , NAVAA P , et al. Ultimate trough®: a significant step towards cost-competitive CSP[J]. Energy Procedia, 2014, 49 (9): 1831- 1839. |
43 | WINKELMANN U , KAMPER C , HOFFER R , et al. Wind actions on large-aperture parabolic trough solar collectors: wind tunnel tests and structural analysis[J]. Renewable Energy, 2020, 146, 2390- 2407. |
[1] | 屠楠, 刘家琛, 徐静, 方嘉宾, 马彦花. 管壳式相变蓄热器的蓄释热过程性能分析[J]. 发电技术, 2024, 45(3): 508-516. |
[2] | 刘学, 李国栋, 张瑞颖, 侯一晨, 陈磊, 杨立军. 电站空冷岛轴流风机模型研究[J]. 发电技术, 2024, 45(3): 545-557. |
[3] | 龚思琦, 云再鹏, 许明, 敖乐, 李初福, 黄凯, 孙晨. 基于三元催化剂的固体氧化物燃料电池尾气催化燃烧数值模拟[J]. 发电技术, 2024, 45(2): 331-340. |
[4] | 王若为, 李音璇, 葛维春, 张诗钽, 刘闯, 楚帅. 沙漠光伏电能外送技术综述[J]. 发电技术, 2024, 45(1): 32-41. |
[5] | 彭道刚, 税纪钧, 王丹豪, 赵慧荣. “双碳”背景下虚拟电厂研究综述[J]. 发电技术, 2023, 44(5): 602-615. |
[6] | 张宁, 朱昊, 杨凌霄, 胡存刚. 考虑可再生能源消纳的多能互补虚拟电厂优化调度策略[J]. 发电技术, 2023, 44(5): 625-633. |
[7] | 杨旸, 李耀强, 张金琦. 基于数值方法的燃气轮机贫预混旋流燃烧室单头部结构设计[J]. 发电技术, 2023, 44(5): 712-721. |
[8] | 刘含笑. 双碳背景下电除尘器的节能减碳分析[J]. 发电技术, 2023, 44(5): 738-744. |
[9] | 曹冬惠, 杜冬梅, 何青. 氢储能安全及其检测技术综述[J]. 发电技术, 2023, 44(4): 431-442. |
[10] | 许洪华, 邵桂萍, 鄂春良, 郭金东. 我国未来能源系统及能源转型现实路径研究[J]. 发电技术, 2023, 44(4): 484-491. |
[11] | 张全斌, 周琼芳. 基于“双碳”目标的中国火力发电技术发展路径研究[J]. 发电技术, 2023, 44(2): 143-154. |
[12] | 杨旸, 郭德三, 李耀强, 张金琦. 燃气轮机贫预混多旋流组合燃烧室头部结构设计[J]. 发电技术, 2023, 44(2): 183-192. |
[13] | 刘文斌, 李璐璐, 李晓金, 姚宣, 杨海瑞. 脱硫湿烟气喷淋冷凝过程中的参数优化研究[J]. 发电技术, 2023, 44(1): 107-114. |
[14] | 黄宇箴, 陈彦奇, 吴志聪, 徐钢, 刘彤. 碳中和背景下热电联产机组抽汽分配节能优化[J]. 发电技术, 2023, 44(1): 85-93. |
[15] | 吴荣辉, 刘冬, 郁冶, 牟凯龙, 赵兰浩. 基于浸入边界法的海上风电双向流固耦合数值模拟方法[J]. 发电技术, 2023, 44(1): 44-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||