发电技术 ›› 2021, Vol. 42 ›› Issue (6): 653-664.DOI: 10.12096/j.2096-4528.pgt.21044
收稿日期:
2021-04-27
出版日期:
2021-12-31
发布日期:
2021-12-23
通讯作者:
徐钢
作者简介:
薛凯(1996), 男, 硕士研究生, 研究方向为多能互补系统集成, xkncepu@163.com基金资助:
Kai XUE(), Yihan WANG(
), Heng CHEN(
), Gang XU(
), Jing LEI(
)
Received:
2021-04-27
Published:
2021-12-31
Online:
2021-12-23
Contact:
Gang XU
Supported by:
摘要:
可再生能源互补热电联产系统在区域综合能源利用领域具有广阔的应用前景。提出了一种槽式太阳能辅助生物质热电联产系统,利用中低温槽式太阳能加热导热油,驱动吸收式热泵给热网水预加热,在生物质燃料与供热量保持恒定的条件下节省采暖抽汽、增加功率输出。采用EBSILON Professional软件对案例机组和集成系统进行建模仿真,在此基础上分析了系统能流与?损等热力学特性。结果表明:设计工况下可产生1.78 MW·h的太阳能发电量,光电效率为20.06%,光电转换?效率可达到21.60%。选取5个典型日探讨不同辐照条件下的系统性能,结果发现3月21日的太阳辐射与系统性能均为最优。对整个供热季进行逐时仿真分析,可知供热期5个月产生太阳能发电量共计1 124.30 MW·h,平均光电效率为16.49%。
中图分类号:
薛凯, 王义函, 陈衡, 徐钢, 雷兢. 槽式太阳能辅助生物质热电联产系统热力学性能分析[J]. 发电技术, 2021, 42(6): 653-664.
Kai XUE, Yihan WANG, Heng CHEN, Gang XU, Jing LEI. Thermodynamic Performance Analysis of a Parabolic Trough Solar-assisted Biomass-fired Cogeneration System[J]. Power Generation Technology, 2021, 42(6): 653-664.
参数 | 数值 |
主蒸汽压力/MPa | 9.40 |
主蒸汽温度/℃ | 535.0 |
主蒸汽流量/(kg/s) | 38.89 |
排汽压力/kPa | 4.90 |
排汽温度/℃ | 32.5 |
排汽流量/(kg/s) | 22.20 |
锅炉效率/% | 89.0 |
表1 案例生物质机组基本热力学参数
Tab. 1 Basic thermodynamic parameters of reference biomass plant
参数 | 数值 |
主蒸汽压力/MPa | 9.40 |
主蒸汽温度/℃ | 535.0 |
主蒸汽流量/(kg/s) | 38.89 |
排汽压力/kPa | 4.90 |
排汽温度/℃ | 32.5 |
排汽流量/(kg/s) | 22.20 |
锅炉效率/% | 89.0 |
参数 | RH1 | RH2 | RH3 | RH4 | RH5 | RH6 |
抽汽温度/℃ | 391.4 | 312.9 | 288.1 | 182.8 | 120.8 | 85.4 |
抽汽压力/MPa | 2.85 | 1.44 | 1.13 | 0.37 | 0.18 | 0.06 |
抽汽流量/(kg/s) | 2.28 | 1.37 | 7.02 | 1.43 | 1.73 | 2.44 |
疏水温度/℃ | 193.4 | 165.7 | - | 115.0 | 84.7 | 32.5 |
疏水流量/(kg/s) | 2.28 | 4.07 | - | 1.43 | 3.15 | 5.60 |
出口给水温度/℃ | 219.3 | 187.8 | 160.1 | 133.0 | 109.4 | 79.1 |
出口给水流量/(kg/s) | 38.89 | 38.89 | 38.89 | 33.35 | 33.35 | 33.35 |
表2 案例生物质机组回热系统基本参数
Tab. 2 Basic parameters of regenerative system for reference biomass plant
参数 | RH1 | RH2 | RH3 | RH4 | RH5 | RH6 |
抽汽温度/℃ | 391.4 | 312.9 | 288.1 | 182.8 | 120.8 | 85.4 |
抽汽压力/MPa | 2.85 | 1.44 | 1.13 | 0.37 | 0.18 | 0.06 |
抽汽流量/(kg/s) | 2.28 | 1.37 | 7.02 | 1.43 | 1.73 | 2.44 |
疏水温度/℃ | 193.4 | 165.7 | - | 115.0 | 84.7 | 32.5 |
疏水流量/(kg/s) | 2.28 | 4.07 | - | 1.43 | 3.15 | 5.60 |
出口给水温度/℃ | 219.3 | 187.8 | 160.1 | 133.0 | 109.4 | 79.1 |
出口给水流量/(kg/s) | 38.89 | 38.89 | 38.89 | 33.35 | 33.35 | 33.35 |
参数 | 数值 |
集热器组件长(宽)度/m | 150.00(5.76) |
集热器组件有效光学面积/m2 | 817.43 |
玻璃外壳的外(内)径/m | 0.120(0.115) |
吸收管外(内)径/m | 0.070(0.065) |
最大光学效率/% | 75.00 |
集热器数量/个 | 12 |
镜场总有效光学面积/m2 | 9 809.16 |
表3 镜场基本参数
Tab. 3 Basic parameters of solar field
参数 | 数值 |
集热器组件长(宽)度/m | 150.00(5.76) |
集热器组件有效光学面积/m2 | 817.43 |
玻璃外壳的外(内)径/m | 0.120(0.115) |
吸收管外(内)径/m | 0.070(0.065) |
最大光学效率/% | 75.00 |
集热器数量/个 | 12 |
镜场总有效光学面积/m2 | 9 809.16 |
参数 | 数值 |
DNI/(W/m2) | 908.67 |
导热油进(出)口温度/℃ | 123.0(153.0) |
导热油流量/(kg/s) | 82.37 |
太阳能输入量/(MW·h) | 8.88 |
镜场效率/% | 52.18 |
有效能/(MW·h) | 4.64 |
表4 太阳能热系统基本参数
Tab. 4 Basic parameters of solar thermal system
参数 | 数值 |
DNI/(W/m2) | 908.67 |
导热油进(出)口温度/℃ | 123.0(153.0) |
导热油流量/(kg/s) | 82.37 |
太阳能输入量/(MW·h) | 8.88 |
镜场效率/% | 52.18 |
有效能/(MW·h) | 4.64 |
参数 | 数值 |
导热油进(出)口温度/℃ | 153.0(123.0) |
导热油流量/(kg/s) | 82.37 |
冷却水进(出)口温度/℃ | 27.5(25.5) |
冷却水流量/(kg/s) | 416.67 |
热网水进(出)口温度/℃ | 50.0(76.3) |
热网水流量/(kg/s) | 74.91 |
供热量/(MW·h) | 8.23 |
COP | 1.776 |
表5 吸收式热泵基本参数
Tab. 5 Basic parameters of absorption heat pump
参数 | 数值 |
导热油进(出)口温度/℃ | 153.0(123.0) |
导热油流量/(kg/s) | 82.37 |
冷却水进(出)口温度/℃ | 27.5(25.5) |
冷却水流量/(kg/s) | 416.67 |
热网水进(出)口温度/℃ | 50.0(76.3) |
热网水流量/(kg/s) | 74.91 |
供热量/(MW·h) | 8.23 |
COP | 1.776 |
参数 | 案例机组 | 集成系统 | 差值 |
热网供水进口温度/℃ | 50.0 | 76.3 | 26.3 |
热网供水出口温度/℃ | 99.0 | 99.0 | 0 |
热网供水流量/(kg/s) | 74.91 | 74.91 | 0 |
供热抽汽压力/MPa | 1.13 | 1.13 | 0 |
供热抽汽温度/℃ | 288.1 | 288.1 | 0 |
供热抽汽流量/(kg/s) | 5.56 | 2.69 | −2.87 |
供热疏水温度/℃ | 60.0 | 86.3 | 26.3 |
供热疏水流量/(kg/s) | 5.56 | 2.69 | −2.87 |
热网加热器热负荷/(MW·h) | 15.39 | 7.16 | −8.23 |
表6 案例机组和集成系统中热网加热器的参数对比
Tab. 6 Parameter comparison of supply-water heater in reference plant and integrated system
参数 | 案例机组 | 集成系统 | 差值 |
热网供水进口温度/℃ | 50.0 | 76.3 | 26.3 |
热网供水出口温度/℃ | 99.0 | 99.0 | 0 |
热网供水流量/(kg/s) | 74.91 | 74.91 | 0 |
供热抽汽压力/MPa | 1.13 | 1.13 | 0 |
供热抽汽温度/℃ | 288.1 | 288.1 | 0 |
供热抽汽流量/(kg/s) | 5.56 | 2.69 | −2.87 |
供热疏水温度/℃ | 60.0 | 86.3 | 26.3 |
供热疏水流量/(kg/s) | 5.56 | 2.69 | −2.87 |
热网加热器热负荷/(MW·h) | 15.39 | 7.16 | −8.23 |
参数 | 案例机组 | 集成系统 | 差值 |
生物质燃料量/(kg/s) | 11.82 | 11.82 | 0 |
DNI/(W/m2) | - | 908.67 | - |
太阳能输入量/(MW·h) | - | 8.88 | - |
总输入能量/(MW·h) | 111.54 | 120.42 | 8.88 |
供热量/(MW·h) | 15.39 | 15.39 | 0 |
净发电量/(MW·h) | 29.98 | 31.76 | 1.78 |
净太阳能发电量/(MW·h) | - | 1.78 | - |
总能量转换效率/% | 40.67 | 39.15 | −1.52 |
光电效率/% | - | 20.06 | - |
表7 案例机组和集成系统的能量参数对比
Tab. 7 Energy parameter comparison of reference plant and integrated system
参数 | 案例机组 | 集成系统 | 差值 |
生物质燃料量/(kg/s) | 11.82 | 11.82 | 0 |
DNI/(W/m2) | - | 908.67 | - |
太阳能输入量/(MW·h) | - | 8.88 | - |
总输入能量/(MW·h) | 111.54 | 120.42 | 8.88 |
供热量/(MW·h) | 15.39 | 15.39 | 0 |
净发电量/(MW·h) | 29.98 | 31.76 | 1.78 |
净太阳能发电量/(MW·h) | - | 1.78 | - |
总能量转换效率/% | 40.67 | 39.15 | −1.52 |
光电效率/% | - | 20.06 | - |
参数 | 案例机组 | 集成系统 | |||
数值/(MW·h) | 比例/% | 数值/(MW·h) | 比例/% | ||
生物质输入㶲 | 128.10 | 100.00 | 128.10 | 100.00 | |
太阳能输入㶲 | - | - | 8.25 | 6.44 | |
总输入㶲 | 128.10 | 100.00 | 136.35 | 106.44 | |
发电输出㶲 | 29.98 | 23.40 | 31.76 | 24.79 | |
供热输出㶲 | 2.17 | 1.69 | 2.17 | 1.69 | |
总输出㶲 | 32.15 | 25.10 | 33.93 | 26.49 | |
锅炉㶲损 | 79.34 | 61.94 | 79.34 | 61.94 | |
汽轮机㶲损 | 7.69 | 6.00 | 8.24 | 6.44 | |
发电机㶲损 | 0.34 | 0.27 | 0.36 | 0.28 | |
凝汽器㶲损 | 1.54 | 1.20 | 1.67 | 1.31 | |
回热器㶲损 | 0.36 | 0.28 | 0.34 | 0.26 | |
镜场㶲损 | - | - | 6.97 | 5.44 | |
吸收式热泵㶲损 | - | - | 0.37 | 0.29 | |
热网加热器㶲损 | 2.97 | 2.32 | 1.21 | 0.94 | |
厂用电 | 3.70 | 2.89 | 3.92 | 3.06 | |
㶲损总计 | 95.95 | 74.90 | 102.43 | 79.96 | |
总㶲转换效率/% | 25.10 | 24.88 | |||
光电转换㶲效率/% | - | 21.60 |
表8 案例机组与集成系统的?参数
Tab. 8 Exergy parameters of reference plant and integrated system
参数 | 案例机组 | 集成系统 | |||
数值/(MW·h) | 比例/% | 数值/(MW·h) | 比例/% | ||
生物质输入㶲 | 128.10 | 100.00 | 128.10 | 100.00 | |
太阳能输入㶲 | - | - | 8.25 | 6.44 | |
总输入㶲 | 128.10 | 100.00 | 136.35 | 106.44 | |
发电输出㶲 | 29.98 | 23.40 | 31.76 | 24.79 | |
供热输出㶲 | 2.17 | 1.69 | 2.17 | 1.69 | |
总输出㶲 | 32.15 | 25.10 | 33.93 | 26.49 | |
锅炉㶲损 | 79.34 | 61.94 | 79.34 | 61.94 | |
汽轮机㶲损 | 7.69 | 6.00 | 8.24 | 6.44 | |
发电机㶲损 | 0.34 | 0.27 | 0.36 | 0.28 | |
凝汽器㶲损 | 1.54 | 1.20 | 1.67 | 1.31 | |
回热器㶲损 | 0.36 | 0.28 | 0.34 | 0.26 | |
镜场㶲损 | - | - | 6.97 | 5.44 | |
吸收式热泵㶲损 | - | - | 0.37 | 0.29 | |
热网加热器㶲损 | 2.97 | 2.32 | 1.21 | 0.94 | |
厂用电 | 3.70 | 2.89 | 3.92 | 3.06 | |
㶲损总计 | 95.95 | 74.90 | 102.43 | 79.96 | |
总㶲转换效率/% | 25.10 | 24.88 | |||
光电转换㶲效率/% | - | 21.60 |
参数 | 数值 |
集热器单位成本/(元/m2) | 1 400.00 |
吸收式热泵初始投资/万元 | 455.63 |
给水加热器初始投资/万元 | 29.79 |
土地单位成本/集热器单位成本 | 0.012 |
上网电价/[元/(kW·h)] | 1.20 |
年运行与维护成本/总初始投资 | 0.01 |
折现率/% | 8.00 |
表9 太阳能热系统经济性参数
Tab. 9 Economic parameters of solar thermal system
参数 | 数值 |
集热器单位成本/(元/m2) | 1 400.00 |
吸收式热泵初始投资/万元 | 455.63 |
给水加热器初始投资/万元 | 29.79 |
土地单位成本/集热器单位成本 | 0.012 |
上网电价/[元/(kW·h)] | 1.20 |
年运行与维护成本/总初始投资 | 0.01 |
折现率/% | 8.00 |
1 | 金红光, 何雅玲, 杨勇平, 等. 分布式能源中的基础科学问题[J]. 中国科学基金, 2020, 34 (3): 266- 271. |
JIN H G , HE Y L , YANG Y P , et al. Basic scientific issues in distributed energy system[J]. China Science Foundation, 2020, 34 (3): 266- 271. | |
2 |
李海玲, 吕芳, 王一波, 等. 以可再生能源为主的多能互补集成应用现状及发展研究[J]. 太阳能, 2020, (9): 14- 24.
DOI |
LI H L , LÜ F , WANG Y B , et al. Status and development research of integrated application of multi-energy complementary system based on renewable energy[J]. Solar Energy, 2020, (9): 14- 24.
DOI |
|
3 | 王庆刚, 杨谋存, 朱跃钊, 等. 可再生能源多能互补热电气联产系统评价方法综述[J]. 电网技术, 2021, 45 (3): 937- 950. |
WANG Q G , YANG M C , ZHU Y Z , et al. Review on evaluation methods of a combined heating, power and biogas system coupled with renewable energy[J]. Power System Technology, 2021, 45 (3): 937- 950. | |
4 |
SHAO M , HAN Z , SUN J , et al. A review of multi-criteria decision making applications for renewable energy site selection[J]. Renewable Energy, 2020, 157, 377- 403.
DOI |
5 |
吕薇. 我国可再生能源发展现状与政策取向[J]. 发展研究, 2009, (1): 4- 8.
DOI |
LÜ W . Renewable energy development status and policy orientation in China[J]. Development and Research, 2009, (1): 4- 8.
DOI |
|
6 | 鲁延辉. 我国可再生能源发电产业技术创新模式研究[D]. 北京: 华北电力大学, 2019. |
LU Y H. Research on the technological innovation model of my country's renewable energy power generation industry[D]. Beijing: North China Electric Power University, 2019. | |
7 |
YDRISSI M E , GHENNIOUI H , BENNOUNA E G , et al. A review of optical errors and available applications of deflectometry technique in solar thermal power applications[J]. Renewable and Sustainable Energy Reviews, 2019, 116, 109438.
DOI |
8 | 张哲旸, 巨星, 潘信宇, 等. 太阳能光伏-光热复合发电技术及其商业化应用[J]. 发电技术, 2020, 41 (3): 220- 330. |
ZHANG Z Y , JU X , PAN X Y , et al. Photovoltaic/concentrated solar power hybrid technology and its commercial application[J]. Power Generation Technology, 2020, 41 (3): 220- 330. | |
9 |
LEE J , WI S , YANG S , et al. Experimental study and assessment of high-tech thermal energy storing radiant floor heating system with latent heat storage materials[J]. International Journal of Thermal Sciences, 2020, 155, 106410.
DOI |
10 |
OGUNMODIMU O , OKOROIGWE E C . Concentrating solar power technologies for solar thermal grid electricity in Nigeria: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 90, 104- 119.
DOI |
11 | 佟锴, 杨立军, 宋记锋, 等. 聚光太阳能集热场先进技术综述[J]. 发电技术, 2019, 40 (5): 413- 425. |
TONG K , YANG L J , SONG J F , et al. Review on advanced technology of concentrated solar power concentrators[J]. Power Generation Technology, 2019, 40 (5): 413- 425. | |
12 | 刘尧东, 张燕平, 万亮, 等. 基于Al2O3纳米流体的槽式太阳能热发电集热器传热建模及性能分析[J]. 发电技术, 2021, 42 (2): 230- 237. |
LIU Y D , ZHANG Y P , WAN L , et al. Heat transfer modelling and performance analysis of trough solar thermal power collector based on Al2O3 nanofluid[J]. Power Generation Technology, 2021, 42 (2): 230- 237. | |
13 | 翟融融, 刘洪涛. 基于有限时间热力学的太阳能辅助燃煤发电系统集成理论分析[J]. 发电技术, 2019, 40 (4): 316- 322. |
ZHAI R R , LIU H T . Theoretical analysis of solar-aided coal-fired power generation system based on finite time thermodynamics[J]. Power Generation Technology, 2019, 40 (4): 316- 322. | |
14 |
QIN J , HU E , LI X . Solar aided power generation: a review[J]. Energy and Built Environment, 2020, 1 (1): 11- 26.
DOI |
15 |
QIN J , HU E , NATHAN G J . Impact of the operation of non-displaced feedwater heaters on the performance of solar aided power generation plants[J]. Energy Conversion and Management, 2017, 135, 1- 8.
DOI |
16 | 侯宏娟, 王学伟, 宋红, 等. 太阳能辅助330 MW燃煤机组互补发电系统动态特性及年性能分析[J]. 太阳能学报, 2018, 39 (12): 3331- 3338. |
HOU H , WANG X , SONG H , et al. Dynamic characteristic and annual performance analysis of solar assisted 330 MW coal-fired unit hybrid power generation system[J]. Acta Energiae Solaris Sinica, 2018, 39 (12): 3331- 3338. | |
17 | 郭民臣, 安广然, 纪执琴, 等. 定功率下太阳能辅助燃煤发电系统的热经济性分析[J]. 中国电机工程学报, 2016, 36 (9): 2444- 2451. |
GUO M C , AN G R , JI Z Q , et al. Thermal economic analyses of a solar aided coal-fired power unit for constant power output[J]. Proceedings of the CSEE, 2016, 36 (9): 2444- 2451. | |
18 | 宋嘉. 槽式太阳能与燃煤空冷机组的集成发电系统热力特性研究[D]. 北京: 华北电力大学, 2018. |
SONG J. Research on thermal characteristics of integrated power generation system of trough solar energy and coal-fired air-cooled unit[D]. Beijing: North China Electric Power University, 2018. | |
19 |
SITUMORANG Y A , ZHAO Z , YOSHIDA A , et al. Small-scale biomass gasification systems for power generation (< 200 kW class): a review[J]. Renewable and Sustainable Energy Reviews, 2020, 117, 109486.
DOI |
20 |
WANG X , ZHU Y , HU Z , et al. Characteristics of ash and slag from four biomass-fired power plants: ash/slag ratio, unburned carbon, leaching of major and trace elements[J]. Energy Conversion and Management, 2020, 214, 112897.
DOI |
21 |
PERKINS G . Techno-economic comparison of the levelised cost of electricity generation from solar PV and battery storage with solar PV and combustion of bio-crude using fast pyrolysis of biomass[J]. Energy Conversion and Management, 2018, 171, 1573- 1588.
DOI |
22 |
QIU G , SHAO Y , LI J , et al. Experimental investigation of a biomass-fired ORC-based micro-CHP for domestic applications[J]. Fuel, 2012, 96, 374- 382.
DOI |
23 |
BAI Z , LIU Q , LEI J , et al. Thermodynamic evaluation of a novel solar-biomass hybrid power generation system[J]. Energy Conversion and Management, 2017, 142, 296- 306.
DOI |
24 |
MORAIS P H D S , LODI A , AOKI A C , et al. Energy, exergetic and economic analyses of a combined solar-biomass-ORC cooling cogeneration systems for a Brazilian small plant[J]. Renewable Energy, 2020, 157, 1131- 1147.
DOI |
25 |
OYEKALE J , PETROLLESE M , CAU G . Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant[J]. Applied Energy, 2020, 268, 114888.
DOI |
26 |
MORRONE P , ALGIERI A , CASTIGLIONE T . Hybridisation of biomass and concentrated solar power systems in transcritical organic Rankine cycles: A micro combined heat and power application[J]. Energy Conversion and Management, 2019, 180, 757- 768.
DOI |
27 |
ZHANG X H , YANG J J , FAN Y , et al. Experimental and analytic study of a hybrid solar/biomass rural heating system[J]. Energy, 2020, 190, 116392.
DOI |
28 | 李雪如. 生物质能辅助太阳能热发电控制研究[D]. 北京: 华北电力大学, 2015. |
LI X R. Research on the control of biomass-assisted solar thermal power generation[D]. Beijing: North China Electric Power University, 2015. | |
29 |
WU H F , LIU Q B , ZHANG B , et al. Thermodynamics analysis of a novel steam/air biomass gasification combined cooling, heating and power system with solar energy[J]. Applied Thermal Engineering, 2020, 164, 114494.
DOI |
30 | 麻国倩. 基于EBSILON二次再热百万机组机炉耦合建模仿真及热经济性研究[D]. 济南: 山东大学, 2020. |
MA G Q. Based on EBSILON secondary reheat million units turbine-boiler coupling modeling simulation and thermal economy[D]. Jinan: Shandong University, 2020. | |
31 | 赵世飞, 王为术, 刘军. 1000 MW超临界二氧化碳燃煤发电系统热力学性能分析[J]. 热力发电, 2020, 49 (12): 9- 16. |
ZHAO S F , WANG W S , LIU J . Thermodynamic performance analysis for a 1000 MW coal-fired supercritical CO2 power plant[J]. Thermal Power Generation, 2020, 49 (12): 9- 16. | |
32 |
MONTES M J , ABÁNADES A , MARTÍNEZ-VAL J M , et al. Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors[J]. Solar Energy, 2009, 83 (12): 2165- 2176.
DOI |
33 |
WU J , HOU H , YANG Y , et al. Annual performance of a solar aided coal-fired power generation system (SACPG) with various solar field areas and thermal energy storage capacity[J]. Applied Energy, 2015, 157, 123- 133.
DOI |
34 | 宋淑英. 电厂热力循环的?分析[J]. 天津电力技术, 1997, (4): 1- 6. |
SONG S Y . Exergy analysis of power plant thermal cycle[J]. Tianjin Electric Power Technology, 1997, (4): 1- 6. | |
35 |
ZHU Y , LI W , LI J , et al. Thermodynamic analysis and economic assessment of biomass-fired organic Rankine cycle combined heat and power system integrated with CO2 capture[J]. Energy Conversion and Management, 2020, 204, 112310.
DOI |
36 |
ZHANG C , LIU C , WANG S , et al. Thermo-economic comparison of subcritical organic Rankine cycle based on different heat exchanger configurations[J]. Energy, 2017, 123, 728- 741.
DOI |
37 | BAI Z , SUN J , LIU Q . Comprehensive assessment of lin-/point-focus combined scheme for concentrating solar power system[J]. International Journal of Energy Research, 2018, (5): 1983- 1998. |
38 | 侯宏娟, 崔浩, 黄畅, 等. 直接空冷型槽式太阳能发热电系统技术经济分析[J]. 太阳能学报, 2021, 42 (1): 90- 95. |
HOU H J , CUI H , HUANG C , et al. Technical and economic analysis of parabolic trough solar thermal power generation system with direct air-cooling[J]. Acta Energiae Solaris Sinica, 2021, 42 (1): 90- 95. |
[1] | 董军, 汤建方, 臧春城, 徐立, 王志峰. 抛物面槽式太阳能集热器球形接头测试系统的研制与应用[J]. 发电技术, 2024, 45(2): 291-298. |
[2] | 霍丽新, 王日成. 水电联产机组低负荷工况海水淡化系统供汽方案研究[J]. 发电技术, 2023, 44(5): 722-730. |
[3] | 黄宇箴, 陈彦奇, 吴志聪, 徐钢, 刘彤. 碳中和背景下热电联产机组抽汽分配节能优化[J]. 发电技术, 2023, 44(1): 85-93. |
[4] | 王宇兴, 赵彦杰, 杨湛晔, 张虎润, 林曼妮. 喷射式冷电联供系统优化分析[J]. 发电技术, 2022, 43(6): 942-950. |
[5] | 徐立, 孙飞虎, 李钧, 张强强. 流量对抛物面槽式太阳能集热器传热特性影响的实验分析[J]. 发电技术, 2021, 42(6): 665-672. |
[6] | 刘兰华, 狄林文, 董兴万, 王瑞林. 抛物槽式聚光太阳能集热回路动态特性研究[J]. 发电技术, 2021, 42(6): 673-681. |
[7] | 王丹丹, 李亚楼, 李芳, 孙璐. 碳中和背景下高温固体氧化物电解制氢的过程建模与热力学分析[J]. 发电技术, 2021, 42(5): 554-560. |
[8] | 张燕平, 张宇超, 刘易飞. 基于概率可靠度的槽式太阳能电站优化设计[J]. 发电技术, 2020, 41(6): 590-598. |
[9] | 张俊博,金旭,刘忠彦,车德勇,隋军. 吸收式热泵余热回收先进技术综述[J]. 发电技术, 2020, 41(3): 269-280. |
[10] | 周宇昊, 张海珍, 宋胜男. 多能互补分布式能源实验平台系统关键技术研究[J]. 发电技术, 2017, 38(6): 5-9,37. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||