发电技术 ›› 2021, Vol. 42 ›› Issue (4): 489-499.DOI: 10.12096/j.2096-4528.pgt.21048
陈尚年1(), 李录平1,*(
), 张世海2, 欧阳敏南1, 樊昂1, 文贤馗2
收稿日期:
2021-04-30
出版日期:
2021-08-31
发布日期:
2021-07-22
通讯作者:
李录平
作者简介:
陈尚年(1997), 男, 硕士研究生, 研究方向为动力机械状态检测与故障诊断, 920191849@qq.com
基金资助:
Shangnian CHEN1(), Luping LI1,*(
), Shihai ZHANG2, Minnan OUYANG1, Ang FAN1, Xiankui WEN2
Received:
2021-04-30
Published:
2021-08-31
Online:
2021-07-22
Contact:
Luping LI
Supported by:
摘要:
高参数大容量汽轮发电机组的安全稳定运行对电力生产具有重要意义。综述了汽轮发电机组振动故障的机理、信号检测、信号分析、特征提取以及故障诊断方法。针对传统的智能诊断方法面临采样数据量大、信号特征提取困难、故障训练样本不足等问题,介绍了先进的传感技术和以深度学习为代表的新一代智能机器学习技术。通过分析得出结论:未来汽轮发电机组振动故障诊断技术应以人工智能、大数据、云计算等技术为核心,融合虚拟化及三维可视化技术,实现故障诊断的速度与精度相统一。
中图分类号:
陈尚年, 李录平, 张世海, 欧阳敏南, 樊昂, 文贤馗. 汽轮发电机组振动故障诊断技术研究进展[J]. 发电技术, 2021, 42(4): 489-499.
Shangnian CHEN, Luping LI, Shihai ZHANG, Minnan OUYANG, Ang FAN, Xiankui WEN. Research Progress of Vibration Fault Diagnosis Technology for Steam Turbine Generator Sets[J]. Power Generation Technology, 2021, 42(4): 489-499.
1 |
孙和泰, 孙彬, 黄翔, 等. 汽轮发电机组振动故障诊断相关分析方法及应用[J]. 汽轮机技术, 2020, 62 (4): 292- 294.
DOI |
SUN H T , SUN B , HUANG X , et al. Correlative analysis method and application for vibration fault diagnosis of turbine generator unit[J]. Turbine Technology, 2020, 62 (4): 292- 94.
DOI |
|
2 | 梁银林, 张小波, 翟璇. 数据驱动的汽轮机健康状态管理技术综述[J]. 浙江电力, 2021, 40 (4): 120- 126. |
LIANG Y L , ZHANG X B , ZHAI X , et al. A review of data-driven health management technology of steam turbine[J]. Zhejiang Electric Power, 2021, 40 (4): 120- 126. | |
3 | 郝帅, 吴昕, 王明远, 等. 350 MW超临界机组汽轮机汽流激振分析及处理[J]. 发电技术, 2019, 40 (2): 168- 174. |
HAO S , WU X , WANG M Y , et al. Analysis and processing of the steam-flow exciting vibration in steam turbine of a 350 MW supercritical unit[J]. Power Generation Technology, 2019, 40 (2): 168- 174. | |
4 | 王志杰, 陈厚涛, 唐桢淇. 基于运行数据的汽轮机阀门流量特性参数优化[J]. 广东电力, 2019, 32 (3): 32- 36. |
WANG Z J , CHEN H T , TANG Z Q , et al. Optimization on characteristic parameters of steam turbine valve flow based on operating data[J]. Guangdong Electric Power, 2019, 32 (3): 32- 36. | |
5 | 艾科勇. 基于本体和信号分析的汽轮发电机组故障诊断技术[D]. 兰州: 兰州理工大学, 2020. |
AI K Y. Fault diagnosis technology of turbine generator based on ontology and signal analysis[D]. Lanzhou: Lanzhou University of Technology, 2020. | |
6 | 黄金平. 转子瞬态动平衡方法研究[D]. 西安: 西北工业大学, 2006. |
HUANG J P. Research on transient dynamic balancing method of rotor[D]. Xi'an: Northwestern Polytechnical University, 2006. | |
7 | BIN G , LI X , WU J , et al. Virtual dynamic balancing method without trial weights for multi-rotor series shafting based on finite element model analysis[J]. Journal of Renewable & Sustainable Energy, 2014, 6 (4): 130- 136. |
8 | 宾光富, 李学军, 蒋勉, 等. 三支撑轴系转子残余不平衡量相位差组合振动特性研究[J]. 动力学与控制学报, 2017, 15 (5): 446- 452. |
BIN G F , LI X J , JIANG M , et al. Vibration characteristics for residual unbalance phase difference of shafting with three supports[J]. Journal of Vibration and Control, 2017, 15 (5): 446- 452. | |
9 | 沈意平, 宾光富, 王钢, 等. 透平机械三转子四支撑轴系不平衡振动特性[J]. 振动、测试与诊断, 2018, 38 (5): 985- 990. |
SHEN Y P , BIN G F , WANG G , et al. Vibration characteristics for unbalance of turbomachinery shafting with three-rotor and four-support[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38 (5): 985- 990. | |
10 | 周生通, 祁强, 周新建, 等. 轴弯曲与不平衡柔性转子共振稳态响应随机分析[J]. 计算力学学报, 2020, 37 (1): 23- 30. |
ZHOU S T , QI Q , ZHOU X J , et al. Stochastic analysis of resonance steady-state response of rotor with shaft bending and unbalance faults[J]. Chinese Journal of Computational Mechanics, 2020, 37 (1): 23- 30. | |
11 | 崔亚辉, 姚剑飞, 徐亚涛, 等. 西门子1000 MW汽轮机组轴系碰磨故障特性研究[J]. 中国电力, 2020, 53 (6): 133- 139. |
CUI Y H , YAO J F , XU Y T , et al. Theoretical study and experimental research on collision fault of shaft system of Siemens 1000MW steam turbine unit[J]. China Electric Power, 2020, 53 (6): 133- 139. | |
12 | 许琦, 吴昊, 赵立超, 等. 多跨转子系统耦合故障定量诊断方法[J]. 振动工程学报, 2015, 28 (3): 495- 502. |
XU Q , WU H , ZHAO L C , et al. Quantitative coupling fault diagnosis method of multi-span rotor based on harmonic components[J]. Journal of Vibration Engineering, 2015, 28 (3): 495- 502. | |
13 |
ASJAD M M , DARPE A K , KSHITIJ G . Analysis of stator vibration response for the diagnosis of rub in a coupled rotor-stator system[J]. International Journal of Mechanical Sciences, 2018, 144, 392- 406.
DOI |
14 | 王威, 甘春标. 不确定性激励下碰摩转子的振动响应识别[J]. 振动与冲击, 2019, 38 (18): 122- 127. |
WANG W , GAN C B . Identification of the vibration responses of a rub-impact rotor under uncertain excitations[J]. Journal of Vibration and Shock, 2019, 38 (18): 122- 127. | |
15 | 李傲, 赵立, 周传迪, 等. 碰摩拉杆转子弯扭耦合非线性动力学响应特性[J]. 动力工程学报, 2020, 40 (3): 205- 211. |
LI A , ZHAO L , ZHOU C D , et al. Nonlinear dynamic characteristics of a rod rotor with rub-impact faults under bending-torsion coupling[J]. Journal of Chinese Society of Power Engineering, 2020, 40 (3): 205- 211. | |
16 | 李洪亮, 侯磊, 徐梅鹏, 等. 基于HB-AFT方法的不对中转子系统超谐共振分析[J]. 机械工程学报, 2019, 55 (13): 94- 100. |
LI H J , HOU L , XU M P , et al. Superharmonic resonance analysis of misaligned rotor system based on HB-AFT method[J]. Journal of Mechanical Engineering, 2019, 55 (13): 94- 100. | |
17 | 胡航领, 何立东, 王晨阳. 2N和N+1支撑三跨转子在三种联轴器下的振动特性实验研究[J]. 振动与冲击, 2017, 36 (5): 172- 176. |
HU H L , HE L D , WANG C Y . Tests for vibration characteristics of a N-span & 2N-support rotor system and a N-span & (N+1)-support one connected with three kinds of coupling[J]. Journal of Vibration and Shock, 2017, 36 (5): 172- 176. | |
18 | LEI Q , LIN J , LIAO Y , et al. Changes in rotor response characteristics based diagnostic method and its application to identification of misalignment[J]. Measurement, 2019, 86, 268- 276. |
19 | 李自刚, 李明, 江俊. 交角不对中转子-轴承系统非线性动力学行为研究[J]. 振动工程学报, 2019, 32 (3): 509- 516. |
LI Z G , LI M , JIANG J . Nonlinear dynamics of rotor-bearing systems with a fault of angular misalignment[J]. Journal of Vibration Engineering, 2019, 32 (3): 509- 516. | |
20 | 潘宏刚, 庞智元, 肖增弘, 等. 多跨转子系统联轴器偏角不对中试验研究[J]. 动力工程学报, 2020, 40 (4): 305- 310. |
PAN H G , PANG Z Y , XIAO Z H , et al. Experimental study on misalignment of coupling deflection angle in multi-span rotor system[J]. Journal of Chinese Society of Power Engineering, 2020, 40 (4): 305- 310. | |
21 |
田新启, 高亹. 基于PSD的旋转机械振动传感器[J]. 振动、测试与诊断, 2010, 30 (6): 638- 641.
DOI |
TIAN X Q , GAO W . Rotating machinery vibration sensor based on position sensitive detector[J]. Journal of Vibration, Measurement & Diagnosis, 2010, 30 (6): 638- 641.
DOI |
|
22 | 李志凤, 赵登峰, 马国鹭, 等. 回转件弯扭测量系统及其不确定度分析[J]. 应用光学, 2015, 36 (5): 778- 783. |
LI Z F , ZHAO D F , MA G L , et al. Bending and torsion measuring system of rotary parts and it's uncertainty analysis[J]. Journal of Applied Optics, 2015, 36 (5): 778- 783. | |
23 | 刘洋, 曹宇, 辛旭. 基于虚拟现实技术的激光传感器数据多维可视化方法[J]. 激光杂志, 2021, 42 (2): 166- 169. |
LIU Y , CAO Y , XIN X . Multi-dimensional visualization method of laser sensor data based on virtual reality technology[J]. Laser Journal, 2021, 42 (2): 166- 169. | |
24 | 许良毅. 汽轮机轴向位移、胀差的安装与调试[J]. 控制工程, 2009, 16, 171- 172. |
XU L Y . Eddy current transducer installation and debugging in turbine axis displacement and differential expansion[J]. Control Engineering of China, 2009, 16, 171- 172. | |
25 | 赵梓妤, 刘振侠, 吕亚国, 等. 高分辨率转子叶尖间隙测量传感器的设计及验证[J]. 仪器仪表学报, 2018, 39 (6): 132- 139. |
ZHAO Z Y , LIU Z X , LIU Y G , et al. Design and verification of high resolution eddy current sensor for blade tip clearance measurement[J]. Chinese Journal of Scientific Instrument, 2018, 39 (6): 132- 139. | |
26 | YE D C , DUAN F J , Zhou Q , et al. Vibrations measurements for shrouded blades of steam turbines based on eddy current sensors with high frequency response[J]. Journal of Measurement Science and Instrumentation, 2019, 10 (4): 315- 321. |
27 | 许泽玮, 杨建刚, 沈德明. 热应力引发的轴颈中心位置测量误差分析[J]. 动力工程学报, 2021, 41 (3): 208- 213. |
XU Z W , YANG J G , SHEN D M . Analysis of measurement error of journal center position caused by thermal stress[J]. Journal of Chinese Society of Power Engineering, 2021, 41 (3): 208- 213. | |
28 | 滕峰成, 蔡亚楠, 李志全, 等. 一种改进型光纤光栅振动检测系统[J]. 仪器仪表学报, 2005, 26 (5): 17- 19. |
TENG F C , CAI Y N , LI Z Q , et al. An improved vibration detecting system based on fiber grating[J]. Chinese Journal of Scientific Instrument, 2005, 26 (5): 17- 19. | |
29 | 佟庆彬, 马惠萍, 刘丽华, 等. 高速旋转机械径向振动检测系统关键技术研究[J]. 仪器仪表学报, 2011, 32 (5): 1026- 1032. |
TONG Q B , MA H P , LIU L H , et al. Key technology study on radial vibration detection system of high-speed rotating machinery[J]. Chinese Journal of Scientific Instrument, 2011, 32 (5): 1026- 1032. | |
30 | LI T , TAN Y , ZHOU Z , et al. Turbine rotor dynamic balance vibration measurement based on the non-contact optical fiber grating sensing[J]. IEICE Electronics Express, 2015, 12 (12): 1210- 1219. |
31 | YE D , DUAN F , JIANG J , et al. Synchronous vibration measurements for shrouded blades based on fiber optical sensors with lenses in a steam turbine[J]. Sensors, 2019, 19 (11): 156- 163. |
32 | Al-BADOUR F , SUNAR M , CHEDED L . Vibration analysis of rotating machinery using time-frequency analysis and wavelet techniques[J]. Mechanical Systems & Signal Processing, 2011, 25 (6): 2083- 2101. |
33 |
YU X , LI S , CHENG C , et al. An intelligent fault diagnosis method of rotating machinery based on deep neural networks and time-frequency analysis[J]. Journal of Vibroengineering, 2018, 20 (6): 2321- 2335.
DOI |
34 |
向玲, 李媛媛. 经验小波变换在旋转机械故障诊断中的应用[J]. 动力工程学报, 2015, 35 (12): 975- 981.
DOI |
XIANG L , LI Y Y . Application of empirical wavelet transform in fault diagnosis of rotary mechanisms[J]. Journal of Chinese Society of Power Engineering, 2015, 35 (12): 975- 981.
DOI |
|
35 |
YAN R , GAO R X , CHEN X . Wavelets for fault diagnosis of rotary machines: a review with applications[J]. Signal Processing, 2014, 96, 1- 15.
DOI |
36 | NIU P F , ZHANG J , ZOU G . Study on application of wavelet transform technique to turbine generator fault diagnosis[J]. Chinese Journal of Scientific Instrument, 2007, 28 (1): 189- 192. |
37 |
牛培峰, 张君, 邹刚. 小波分析技术在汽轮机故障诊断中的应用研究[J]. 仪器仪表学报, 2007, 28 (1): 189- 192.
DOI |
NIU P F , ZHANG J , ZOU G . Study on application of wavelet transform technique to turbine generator fault diagnosis[J]. Chinese Journal of Scientific Instrument, 2007, 28 (1): 189- 192.
DOI |
|
38 | LIAO W, HUA W, FENG L. Fault diagnosis of turbine generator vibration based on wavelet packet and data-driven[C]//ISECS International Colloquium on Computing, Communication, Control, & Management. IEEE, 2009. |
39 |
胡三高, 安宏文, 马志勇, 等. 基于小波奇异值分析的汽轮机碰磨特征提取[J]. 动力工程学报, 2013, 33 (3): 184- 188.
DOI |
HU S G , AN H W , MA Z Y , et al. Feature extraction of rubbing fault for steam turbines based on wavelet singularity analysis[J]. Journal of Chinese Society of Power Engineering, 2013, 33 (3): 184- 188.
DOI |
|
40 | 李宏坤, 徐福健, 高巧红, 等. 利用小波尺度谱同步平均的时频脊故障特征提取[J]. 振动工程学报, 2015, 28 (3): 487- 494. |
LI H K , XU F J , GAO Q H , et al. Fault feature extraction for synchronous averaging wavelet scalogram based on time-frequency ridge[J]. Journal of Vibration Engineering, 2015, 28 (3): 487- 494. | |
41 | UMBRAJKAAR A , KRISHNAMOORTHY A . Vibration analysis using wavelet transform and fuzzy logic for shaft misalignment[J]. Journal of Vibroengineering, 2018, 20 (8): 156- 161. |
42 | LEI Y , LI N , LIN J , et al. Fault diagnosis of rotating machinery based on an adaptive ensemble empirical mode decomposition[J]. Sensors, 2013, 13 (12): 286- 294. |
43 | 向玲, 鄢小安. 汽轮机转子故障诊断中LMD法和EMD法的性能对比研究[J]. 动力工程学报, 2014, 34 (12): 945- 951. |
XIANG L , YAN X A . Performance contrast between lmd and emd in fault diagnosis of turbine rotors[J]. Journal of Chinese Society of Power Engineering, 2014, 34 (12): 945- 951. | |
44 |
田松峰, 胥佳瑞, 王美俊, 等. 基于EEMD云模型与SVM的汽轮机转子故障诊断方法[J]. 热力发电, 2017, 46 (4): 111- 114.
DOI |
TIAN S F , XU J R , WANG M J , et al. A rotor fault diagnosis method based on EEMD cloud model and SVM[J]. Thermal Power Generation, 2017, 46 (4): 111- 114.
DOI |
|
45 | 田松峰, 魏言, 郁建雄, 等. 基于变分模态分解云模型和优化LSSVM的汽轮机振动故障诊断[J]. 动力工程学报, 2019, 39 (10): 818- 825. |
TIAN S F , WEI Y , YU J X , et al. Vibration fault diagnosis of steam turbines based on VMD and optimized LSSVM[J]. Journal of Chinese Society of Power Engineering, 2019, 39 (10): 818- 825. | |
46 |
唐贵基, 庞彬. 基于ALIF-HT的汽轮发电机组转子故障诊断[J]. 动力工程学报, 2017, 37 (11): 883- 889.
DOI |
TANG G J , PANG B . Fault diagnosis of a turbo-generator rotor based on ALIF-HT[J]. Journal of Chinese Power Engineering, 2017, 37 (11): 883- 889.
DOI |
|
47 |
LIN L , WANG Y , ZHOU H . Iterative filtering as an alternative algorithm for empirical mode decomposition[J]. Advances in Adaptive Data Analysis, 2009, 1 (4): 543- 560.
DOI |
48 | CICONE A , LIU J , ZHOU H . Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis[J]. Applied & Computational Harmonic Analysis, 2016, 41 (2): 384- 411. |
49 | 唐贵基, 李树才, 卢盛阳, 等. 基于CERLMDAN的转子故障诊断[J]. 动力工程学报, 2020, 309 (9): 34- 41. |
TANG G J , LI S C , LU S Y , et al. Rotor fault diagnosis based on CERLMDAN[J]. Journal of Chinese Power Engineering, 2020, 309 (9): 34- 41. | |
50 | ZHU X , ZHAO J , HOU D , et al. An SDP characteristic information fusion-based CNN vibration fault diagnosis method[J]. Shock and Vibration, 2019, (3): 1- 14. |
51 | ZHU X , HOU D , ZHOU P , et al. Rotor fault diagnosis using a convolutional neural network with symmetrized dot pattern images[J]. Measurement, 2019, 67, 365- 372. |
52 | 张前图, 房立清. 基于图像形状特征和LLTSA的故障诊断方法[J]. 振动与冲击, 2016, 35 (9): 172- 177. |
ZHANG Q T , FANG L Q . Fault diagnosis method based on image shape features and LLTSA[J]. Journal of Vibration and Shock, 2016, 35 (9): 172- 177. | |
53 | 朱霄珣, 罗学智, 叶行飞, 等. 基于深度特征学习的汽轮机转子状态识别方法[J]. 中国电机工程学报, 2021, 41 (2): 432- 442. |
ZHU X X , LUO X Z , YE X F , et al. State recognition method of turbine rotor based on depth feature learning[J]. Proceedings of the CSEE, 2021, 41 (2): 432- 442. | |
54 | 王慧滨. 基于规则和案例推理的汽轮发电机组故障诊断专家系统[D]. 兰州: 兰州理工大学, 2014. |
WANG H B. Fault diagnosis expert system of turbine generator sets based on rules reasoning and case reasoning[D]. Lanzhou: Lanzhou University of Technology, 2014. | |
55 | 于达仁, 王伟. 基于规则的故障诊断计算复杂性分析[J]. 动力工程, 2007, 27 (3): 372- 375. |
YU D R , WANG W . On computational complexity of rule-based fault diagnosis[J]. Journal of Chinese Society of Power Engineering, 2007, 27 (3): 372- 375. | |
56 |
YANG M , QIANG S . Reinforcing fuzzy rule-based diagnosis of turbomachines with case-based reasoning[J]. International Journal of Knowledge-Based and Intelligent Engineering Systems, 2008, 12 (2): 173- 181.
DOI |
57 | YAN C F , WANG H B , ZHOU L L , et al. Fault diagnosis expert system of turbine generator sets based on rule reasoning and case reasoning[J]. Applied Mechanics & Materials, 2014, 513/517, 4443- 4448. |
58 | FANG M, XU Z. Vibration fault diagnosis for steam turbine-generators based on history cases and artificial neural network[C]//2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). IEEE, 2018. |
59 | XU C , HAO Z , PENG D . Study of fault diagnosis based on SVM for turbine generator unit[J]. IEEE, 2012, (5): 110- 113. |
60 | LIN S, ZHANG T. Fault diagnosis of steam turbine generator unit based on support vector machine[C]//International Conference on Measurement. IEEE, 2014. |
61 |
石志标, 陈斐, 曹丽华. 基于EWT与排列熵的SVM汽轮机转子故障诊断[J]. 汽轮机技术, 2017, 59 (6): 439- 442.
DOI |
SHI Z B , CHEN F , CAO L H . Fault diagnosis of steam turbine rotor based on EWT and permutation entropy and SVM[J]. Turbine Technology, 2017, 59 (6): 439- 442.
DOI |
|
62 | 石志标, 陈斐, 曹丽华. 基于排列熵与IFOA-RVM的汽轮机转子故障诊断[J]. 振动与冲击, 2018, 37 (5): 79- 84. |
SHI Z B , CHEN F , CAO L H . Fault diagnosis of steam turbine rotor based on permutation entropy and IFOA-RVM[J]. Journal of Vibration and Shock, 2018, 37 (5): 79- 84. | |
63 | 杨楠, 叶迪, 林杰, 等. 基于数据驱动具有自我学习能力的机组组合智能决策方法研究[J]. 中国电机工程学报, 2019, 39 (10): 2934- 2946. |
YANG N , YE D , LIN J , et al. Research on data-driven intelligent security-constrained unit commitment dispatching method with self-learning ability[J]. Proceedings of the CSEE, 2019, 39 (10): 2934- 2946. | |
64 | 尚宇炜, 郭剑波, 吴文传, 等. 数据-知识融合的机器学习(1): 模型分析[J]. 中国电机工程学报, 2019, 39 (15): 4406- 4416. |
SHANG Y W , GUO J B , WU W C , et al. Machine learning methods embedded with domain knowledge (part i): model analysis[J]. Proceedings of the CSEE, 2019, 39 (15): 4406- 4416. | |
65 | 周奇才, 刘星辰, 赵炯, 等. 旋转机械一维深度卷积神经网络故障诊断研究[J]. 振动与冲击, 2018, 37 (23): 39- 45. |
ZHOU Q C , LIU X C , ZHAO J , et al. Fault diagnosis for rotating machinery based on 1D depth convolutional neural network[J]. Journal of Vibration and Shock, 2018, 37 (23): 39- 45. | |
66 |
WANG T , WANG J , WU Y , et al. A fault diagnosis model based on weighted extension neural network for turbo-generator sets on small samples with noise[J]. Chinese Journal of Aeronautics, 2020, 33 (10): 2757- 2769.
DOI |
67 | 王崇宇, 郑召利, 刘天源, 等. 基于卷积神经网络的汽轮机转子不平衡与不对中故障检测方法研究[J]. 中国电机工程学报, 2021, 41 (7): 2417- 2427. |
WANG C Y , ZHENG Z L , LIU T Y , et al. Research on detection method of steam turbine rotor unbalance and misalignment fault based on convolution neural network[J]. Proceedings of the CSEE, 2021, 41 (7): 2417- 2427. | |
68 |
HINTON G E , OSINDERO S , TEH Y W . A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18 (7): 1527- 1554.
DOI |
69 | FU S , ZHONG S , LIN L , et al. A re-optimized deep auto-encoder for gas turbine unsupervised anomaly detection[J]. Engineering Applications of Artificial Intelligence, 2021, 101 (12): 104199. |
70 | TIAN H A , RM A , JZ B . Combination bidirectional long short-term memory and capsule network for rotating machinery fault diagnosis[J]. Measurement, 2021, 176, 235- 242. |
[1] | 贾梦涵, 刘刚, 徐世杰, 吴双应. 异构图像融合算法及其在电力设施检测中的应用研究[J]. 发电技术, 2024, 45(3): 558-565. |
[2] | 王翔宇, 陈武晖, 郭小龙, 常喜强. 发电系统数字化研究综述[J]. 发电技术, 2024, 45(1): 120-141. |
[3] | 陈代俊, 陈里里, 李阳涛. 联合循环发电站电力输出预测[J]. 发电技术, 2024, 45(1): 99-105. |
[4] | 封钰, 宋佑斌, 金晟, 冯家欢, 史雪晨, 俞永杰, 黄弦超. 基于随机森林算法和粗糙集理论的改进型深度学习短期负荷预测模型[J]. 发电技术, 2023, 44(6): 889-895. |
[5] | 安吉振, 郑福豪, 刘一帆, 陈衡, 徐钢. 基于大数据分析的火电机组引风机故障预警研究[J]. 发电技术, 2023, 44(4): 557-564. |
[6] | 阮存钦, 洪志刚, 赖培灿, 张建华, 林锡昆, 周江, 冯前伟, 张杨. 基于在线监测数据的燃煤电厂脱硝装置性能预测研究[J]. 发电技术, 2023, 44(1): 100-106. |
[7] | 董光德, 李道明, 陈咏涛, 马兴, 付昂, 穆钢, 肖白. 基于粒子群优化与卷积神经网络的电能质量扰动分类方法[J]. 发电技术, 2023, 44(1): 136-142. |
[8] | 张航, 周传杰, 张林, 陈节涛, 徐春梅, 彭道刚. 基于概率神经网络-小波神经网络-DS信息融合的电厂引风机故障诊断[J]. 发电技术, 2022, 43(6): 951-958. |
[9] | 霍龙, 张誉宝, 陈欣. 人工智能在分布式储能技术中的应用[J]. 发电技术, 2022, 43(5): 707-717. |
[10] | 黄超, 卜思齐, 陈麒宇, 李晓虹. 元电力:新一代智能电网[J]. 发电技术, 2022, 43(2): 287-304. |
[11] | 白明亮, 张冬雪, 刘金福, 刘娇, 于达仁. 基于深度自编码器和支持向量数据描述的燃气轮机高温部件异常检测[J]. 发电技术, 2021, 42(4): 422-430. |
[12] | 李亚光, 李蒙. 基于深度小世界神经网络的风电机组异常检测[J]. 发电技术, 2021, 42(3): 313-321. |
[13] | 杨昌杏, 李录平. 风力机叶片损伤故障检测技术研究进展[J]. 发电技术, 2020, 41(6): 599-607. |
[14] | 危威. 大型火电厂风机质量不平衡故障分析及处理[J]. 发电技术, 2020, 41(2): 198-201. |
[15] | 丁腾波,刘宏波,吴聘. 智慧能源体系信息通信技术构架及实施方案[J]. 发电技术, 2020, 41(2): 150-159. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||