发电技术 ›› 2021, Vol. 42 ›› Issue (4): 500-508.DOI: 10.12096/j.2096-4528.pgt.21001
刘长春(), 关淳(
), 郭魁俊(
), 李宇峰(
), 马义良(
)
收稿日期:
2021-01-19
出版日期:
2021-08-31
发布日期:
2021-07-22
作者简介:
刘长春(1976), 男, 高级工程师, 主要从事叶片结构、气动技术研究, HTCliuchangchun@163.com
Changchun LIU(), Chun GUAN(
), Kuijun GUO(
), Yufeng LI(
), Yiliang MA(
)
Received:
2021-01-19
Published:
2021-08-31
Online:
2021-07-22
摘要:
基于叶片气动和结构振动仿真计算平台,建立了汽轮机长叶片流固耦合的三维计算模型。以国外某60Hz汽轮机机组次末级叶片为例,分析了叶片流场的气动特性和整圈叶片结构场的振动特性,并进一步结合能量法准则,提出了汽轮机长叶片颤振预测和评估的方法。结果表明,机组流量和叶片节径振动形式对叶片颤振特性影响很大。对于当前次末级叶片,40%流量工况时,流场内压力脉动诱导叶片颤振发生的概率为80%~90%,因此在小流量工况下需慎重使用该类叶片。基于单向流固耦合的方法,能够有效且相对快速地分析流场中脉动压力作用下的周期功,获得叶片模态振动条件下的气动阻尼系数,从而预测叶片颤振特性。
中图分类号:
刘长春, 关淳, 郭魁俊, 李宇峰, 马义良. 汽轮机长叶片颤振预测方法[J]. 发电技术, 2021, 42(4): 500-508.
Changchun LIU, Chun GUAN, Kuijun GUO, Yufeng LI, Yiliang MA. Flutter Prediction Method for Long Blade of Steam Turbine[J]. Power Generation Technology, 2021, 42(4): 500-508.
材料参数 | 设计参数 | |||
参数 | 数值 | 参数 | 数值 | |
材料 | 0Cr17 | 设计转速/(r/min) | 3 600 | |
密度/(kg/m3) | 7 780 | 数量 | 68 | |
泊松比 | 0.3 | 叶高/mm | 441.5 | |
弹性模量/MPa | 213 000 | 设计流量/(t/h) | 325.8 |
表1 转子材料和设计参数
Tab. 1 Rotor materials and design parameters
材料参数 | 设计参数 | |||
参数 | 数值 | 参数 | 数值 | |
材料 | 0Cr17 | 设计转速/(r/min) | 3 600 | |
密度/(kg/m3) | 7 780 | 数量 | 68 | |
泊松比 | 0.3 | 叶高/mm | 441.5 | |
弹性模量/MPa | 213 000 | 设计流量/(t/h) | 325.8 |
工况 | 进口模式 | 进口压力/Pa | 进口温度/K | 出口模式 | 出口压力/Pa | 出口温度/K |
100%流量 | Inlet | 51 552.6 | 357.2 | Outlet | 31 110.0 | — |
40%流量 | Opening | 33 615.1 | 344.3 | Opening | 31 110.0 | 343.1 |
表2 计算域边界条件
Tab. 2 Boundary conditions of calculation domain
工况 | 进口模式 | 进口压力/Pa | 进口温度/K | 出口模式 | 出口压力/Pa | 出口温度/K |
100%流量 | Inlet | 51 552.6 | 357.2 | Outlet | 31 110.0 | — |
40%流量 | Opening | 33 615.1 | 344.3 | Opening | 31 110.0 | 343.1 |
项目 | 单向流固耦合 | 双向流固耦合 |
计算对象 | 周期功、气动阻尼系数 | 非定常力、振动位移 |
假设条件 | 叶片做恒幅振动;频率为某阶固有频率;指定叶间相位角 | 仅考虑汽流力的影响;叶间相位角由计算流道数决定 |
简化程度 | 只需计算两流道 | 一般需全周计算 |
输入参数 | 入口、出口工况参数 | 入口、出口工况参数 |
传递参数 | 流场压力数据;该工况某一节径振动频率下单只叶片各个节点x, y, z三个方向的网格位移数据 | 流场压力数据;结构场网格位移数据 |
目标差异 | 旨在获得叶片气动阻尼与振型、叶间相位角的关系,依据气动阻尼正负判断节径振动是否会激发颤振 | 旨在获得汽流激振力作用下流场–叶片的耦合作用,依据振动位移收敛性来判断颤振是否发生 |
预测评价 | 基于模态共振条件来预测颤振,结果偏保守,计算量较小,适合工程应用 | 仅考虑了汽流力作用来判断颤振,结果有风险,计算量大,计算机配置要求高 |
表3 2种评估颤振的流固耦合方法对比
Tab. 3 Comparison of two liquid-solid coupling methods on flutter evaluation
项目 | 单向流固耦合 | 双向流固耦合 |
计算对象 | 周期功、气动阻尼系数 | 非定常力、振动位移 |
假设条件 | 叶片做恒幅振动;频率为某阶固有频率;指定叶间相位角 | 仅考虑汽流力的影响;叶间相位角由计算流道数决定 |
简化程度 | 只需计算两流道 | 一般需全周计算 |
输入参数 | 入口、出口工况参数 | 入口、出口工况参数 |
传递参数 | 流场压力数据;该工况某一节径振动频率下单只叶片各个节点x, y, z三个方向的网格位移数据 | 流场压力数据;结构场网格位移数据 |
目标差异 | 旨在获得叶片气动阻尼与振型、叶间相位角的关系,依据气动阻尼正负判断节径振动是否会激发颤振 | 旨在获得汽流激振力作用下流场–叶片的耦合作用,依据振动位移收敛性来判断颤振是否发生 |
预测评价 | 基于模态共振条件来预测颤振,结果偏保守,计算量较小,适合工程应用 | 仅考虑了汽流力作用来判断颤振,结果有风险,计算量大,计算机配置要求高 |
工况 | 子系统 | 最大压力/Pa | 最小压力/Pa | 节点数 | 数据传递 |
100%流量 | 流场 | 66 220 | 21 450 | 14 496 | 100% |
结构场 | 67 061 | 23 137 | 13 700 | ||
40%流量 | 流场 | 61 530 | 10 260 | 14 496 | 100% |
结构场 | 61 172 | 10 534 | 13 700 |
表4 流固耦合面压力映射结果
Tab. 4 Pressure mapping results of liquid-solid coupling surface
工况 | 子系统 | 最大压力/Pa | 最小压力/Pa | 节点数 | 数据传递 |
100%流量 | 流场 | 66 220 | 21 450 | 14 496 | 100% |
结构场 | 67 061 | 23 137 | 13 700 | ||
40%流量 | 流场 | 61 530 | 10 260 | 14 496 | 100% |
结构场 | 61 172 | 10 534 | 13 700 |
频率 | NND=−17 | NND=0 | NND=12 | NND=17 | NND=20 |
静频 | 103.22 | 102.46 | 102.88 | 103.22 | 103.43 |
100%流量动频 | 180.11 | 176.49 | 178.55 | 180.11 | 181.02 |
40%流量动频 | 180.74 | 177.30 | 179.26 | 180.74 | 181.60 |
表5 叶片一阶模态振动频率
Tab. 5 First order modal vibration frequency of blade Hz
频率 | NND=−17 | NND=0 | NND=12 | NND=17 | NND=20 |
静频 | 103.22 | 102.46 | 102.88 | 103.22 | 103.43 |
100%流量动频 | 180.11 | 176.49 | 178.55 | 180.11 | 181.02 |
40%流量动频 | 180.74 | 177.30 | 179.26 | 180.74 | 181.60 |
工况 | NND=−17 | NND=0 | NND=12 | NND=17 | NND=20 |
100%流量 | ![]() | ![]() | ![]() | ![]() | ![]() |
40%流量 | ![]() | ![]() | ![]() | ![]() | ![]() |
表6 叶片一阶模态振动振型
Tab. 6 First order modal vibration mode of blade
工况 | NND=−17 | NND=0 | NND=12 | NND=17 | NND=20 |
100%流量 | ![]() | ![]() | ![]() | ![]() | ![]() |
40%流量 | ![]() | ![]() | ![]() | ![]() | ![]() |
1 |
李宇峰, 任大康, 黄钢, 等. 空冷汽轮机低压末级变工况设计[J]. 热力透平, 2004, 33 (1): 14- 16.
DOI |
LI Y F , REN D K , HUANG G , et al. The off-design for LP last stage blade of air-cooling units[J]. Thermal Turbine, 2004, 33 (1): 14- 16.
DOI |
|
2 |
刘万琨. 汽轮机末级叶片颤振设计[J]. 东方电气评论, 2007, 21 (4): 7- 13.
DOI |
LIU W K . Flutter design for steam turbine last blade[J]. Dongfang Electric Review, 2007, 21 (4): 7- 13.
DOI |
|
3 | 陶德平, 杨晓东, 周盛. 蒸汽轮机长叶片颤振预估方法研究[J]. 航空动力学报, 1991, (2): 151- 156. |
TAO D P , YANG X D , ZHOU S . Prediction of long blade flutter in a steam turbine[J]. Journal of Aerospace Power, 1991, (2): 151- 156. | |
4 |
张扬军, 陶德平. 汽轮机叶片颤振研究的新进展[J]. 科学通报, 1996, (23): 2204- 2206.
DOI |
ZHANG Y J , TAO D P . New progress in research on blade flutter of steam turbine[J]. Chinese Science Bulletin, 1996, (23): 2204- 2206.
DOI |
|
5 | 张扬军, 陶德平. 变叶片间相角的蒸汽轮机叶片颤振预测方法[J]. 水利电力机械, 1993, (4): 29- 32. |
ZHANG Y J , TAO D P . Prediction method of steam turbine blade flutter with variable blade phase angle[J]. Hydraulic and Electric Machinery, 1993, (4): 29- 32. | |
6 | 张扬军, 李克俭, 陶德平. 叶片间相角对蒸汽轮机叶片颤振的影响[J]. 航空动力学报, 1994, (3): 277- 280. |
ZHANG Y J , LI K J , TAO D P . Effect of interblade phase angle on blade flutter of steam turbine[J]. Journal of Aerospace Power, 1994, (3): 277- 280. | |
7 |
张兴国, 刘锋, 张陈安. 基于CFD技术的叶片颤振分析[J]. 航空计算技术, 2009, 39 (4): 75- 78.
DOI |
ZHANG X G , LIU F , ZHANG C A . Flutter computation of turbo machinery blades based on CFD[J]. Aeronautical Computing Technique, 2009, 39 (4): 75- 78.
DOI |
|
8 | CARTA F O . Coupled blade-disk-shroud flutter instabilities in turbo-jet engine rotors[J]. Journal of Engineering for Gas Turbines and Power, 2011, 89 (3): 419. |
9 | 姜伟, 谢诞梅, 陈畅, 等. 基于时域分析法的汽轮机末级叶片颤振预测及分析[J]. 振动与冲击, 2015, 34 (11): 194- 199. |
JIANG W , XIE D M , CHEN C , et al. Flutter prediction and analysis for a steam turbine last-stage blade based on time domain analysis method[J]. Journal of Vibration and Shock, 2015, 34 (11): 194- 199. | |
10 | 张帅, 高丽敏, 郑天龙, 等. 基于双向流固耦合方法的某风扇特性数值研究[J]. 工程热物理学报, 2017, 38 (8): 1683- 1691. |
ZHANG S , GAO L M , ZHENG T L , et al. Numerical investigations on characteristic of fan based on two-way fluid-structure interaction approach[J]. Journal of Engineering Thermophysics, 2017, 38 (8): 1683- 1691. | |
11 | 郑赟, 杨慧. 跨音速风扇全环叶片颤振特性的流固耦合分析[J]. 北京航空航天大学学报, 2013, 39 (5): 626- 630. |
ZHENG Y , YANG H . Full assembly fluid/structured flutter analysis of a transonic fan[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39 (5): 626- 630. | |
12 | SADEGHI M, LIU F. Coupled fluid-structure simulation for turbomachinary blade rows[EB/OL]. [2021-01-01]. https://arc.aiaa.org/na101/home/literatum/publisher/aiaa/books/content/6.asm/2005/masm05/6.2005-18/staging/6.2005-18.fp.png_v01. |
13 | 杜云祥, 徐自力, 焦玉雪, 等. 基于振动时滞法的非零叶间相位角叶片颤振[J]. 航空动力学报, 2020, 35 (8): 189- 198. |
DU Y X , XU Z L , JIAO Y X , et al. Blades flutter of non-zero inter-blade phase angle based on vibration time-delay method[J]. Journal of Aerospace Power, 2020, 35 (8): 189- 198. | |
14 | 周迪, 吕彬彬, 陆志良, 等. 能量法和时域法在叶片颤振计算中的比较研究[J]. 航空计算技术, 2019, 49 (5): 43- 48. |
ZHOU D , LV B B , LU Z L , et al. Comparative study on energy method and time-domain method for blade flutter predictions[J]. Aeronautical Computing Technique, 2019, 49 (5): 43- 48. | |
15 | 李迪, 张晓杰, 王延荣. 压气机转子叶片的抑颤设计[J]. 推进技术, 2020, 41 (9): 207- 216. |
LI D , ZHANG X J , WANG Y R . Design for flutter suppression of rotor blade in a compressor[J]. Journal of Propulsion Technology, 2020, 41 (9): 207- 216. | |
16 | 杨光海. 汽轮机叶片的安全防护[M]. 北京: 机械工业出版社, 1992. |
YANG G H . Safety protection of steam turbine blade[M]. Beijing: China Machine Press, 1992. |
[1] | 李延兵, 贾树旺, 张军亮, 符悦, 刘明, 严俊杰. 汽轮机高位布置超超临界燃煤发电系统变工况㶲经济性分析[J]. 发电技术, 2024, 45(1): 69-78. |
[2] | 梁岩芳, 彭姝璇, 崔永军, 罗建超, 何垚年, 白林超, 付经伦. 汽轮机轴封加热器换热性能计算[J]. 发电技术, 2023, 44(6): 817-823. |
[3] | 吴荣辉, 刘冬, 郁冶, 牟凯龙, 赵兰浩. 基于浸入边界法的海上风电双向流固耦合数值模拟方法[J]. 发电技术, 2023, 44(1): 44-52. |
[4] | 石红晖, 王海波, 曹蓉秀, 姚力, 晏鑫. 变工况条件下汽轮机高压缸末级气动及强度性能研究[J]. 发电技术, 2022, 43(6): 959-969. |
[5] | 王志云, 赵玉柱, 王学栋, 张元舒. 调峰机制下供热汽轮机中压调门调节特性试验研究[J]. 发电技术, 2022, 43(6): 970-976. |
[6] | 左启尧, 唐震, 李慧勇, 张颖, 王江峰. 电网调峰背景下汽轮机低压缸零出力技术现状综述[J]. 发电技术, 2022, 43(4): 645-654. |
[7] | 胡丹梅, 曾理, 陈云浩. 半潜式海上风力机流固耦合特性分析[J]. 发电技术, 2022, 43(2): 218-226. |
[8] | 刘云锋, 李宇峰, 王健, 马义良, 关淳. 汽轮机深度调峰的水蚀问题研究[J]. 发电技术, 2021, 42(4): 473-479. |
[9] | 王玉亭, 陈彦奇, 徐钢, 陈衡. 大型燃煤电站汽轮机排汽通道结构优化研究[J]. 发电技术, 2021, 42(4): 464-472. |
[10] | 王婧, 杨金福, 段立强, 田李果, 荆雨田, 杨名. 高参数超超临界燃煤机组汽轮机热力系统优化设计[J]. 发电技术, 2021, 42(4): 480-488. |
[11] | 王学栋, 姜明超, 宋昂. 低压省煤器性能评价试验与节能效果的修正计算方法[J]. 发电技术, 2021, 42(2): 280-287. |
[12] | 李国庆,崔崇,何青. 正暖和倒暖启动对汽轮机组寿命的影响研究[J]. 发电技术, 2019, 40(6): 580-586. |
[13] | 黄小军,杜祥国. 600 MW超临界汽轮机延长混合阀运行时间对机组振动的影响[J]. 发电技术, 2019, 40(2): 175-180. |
[14] | 罗云,陈雪林,李瑞东,苏永健,徐义巍,晁俊凯,李鹏竹,任海彬. 汽轮机变工况下调节级压力预测模型及应用[J]. 发电技术, 2019, 40(2): 161-167. |
[15] | 曹丽华,周凯,司和勇. 基于二次回归正交试验的汽轮机排汽缸加装导流板的研究[J]. 发电技术, 2019, 40(1): 56-60. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||