Power Generation Technology ›› 2025, Vol. 46 ›› Issue (2): 274-283.DOI: 10.12096/j.2096-4528.pgt.24118
• Modeling, Simulation and Optimal Operation of Integrated Energy System Based on Swarm Intelligence • Previous Articles
Yong SUN1, Zihang GAO2, Zeyin HOU2, Dexin LI1, Yao WANG1, Haifeng ZHANG1, Shuai LU2
Received:
2024-06-23
Revised:
2024-09-12
Published:
2025-04-30
Online:
2025-04-23
Supported by:
CLC Number:
Yong SUN, Zihang GAO, Zeyin HOU, Dexin LI, Yao WANG, Haifeng ZHANG, Shuai LU. Gas Network Aggregate Modeling and Identification Method for Integrated Energy System Operation[J]. Power Generation Technology, 2025, 46(2): 274-283.
参数 | 实验编号 | |
---|---|---|
1 | 2 | |
乘性高斯噪声的标准差/% | 0.1 | 0.1 |
模型阶数 | 10 | 10 |
是否进行数据预处理 | 否 | 是 |
Tab. 1 Experimental setup for validation cases of gas network aggregate model
参数 | 实验编号 | |
---|---|---|
1 | 2 | |
乘性高斯噪声的标准差/% | 0.1 | 0.1 |
模型阶数 | 10 | 10 |
是否进行数据预处理 | 否 | 是 |
所属映射 | 节点编号 | 是否数据预处理 | EMAPE | R2 |
---|---|---|---|---|
气体压强 | 2 | 否 | 0.001 6 | 0.94 |
是 | 0.001 0 | 0.98 | ||
3 | 否 | 0.001 9 | 0.95 | |
是 | 0.001 4 | 0.97 | ||
气体质量流量 | 2 | 否 | 0.140 | -2.90 |
是 | 0.028 | 0.83 | ||
3 | 否 | 0.065 | 0.74 | |
是 | 0.036 | 0.93 |
Tab. 2 Effect of data preprocessing on goodness-of-fit indicators of model
所属映射 | 节点编号 | 是否数据预处理 | EMAPE | R2 |
---|---|---|---|---|
气体压强 | 2 | 否 | 0.001 6 | 0.94 |
是 | 0.001 0 | 0.98 | ||
3 | 否 | 0.001 9 | 0.95 | |
是 | 0.001 4 | 0.97 | ||
气体质量流量 | 2 | 否 | 0.140 | -2.90 |
是 | 0.028 | 0.83 | ||
3 | 否 | 0.065 | 0.74 | |
是 | 0.036 | 0.93 |
所属映射 | 节点编号 | EMAPE | R2 | ||
---|---|---|---|---|---|
未校正 | 校正 | 未校正 | 校正 | ||
气体压强 | 2 | 0.009 7 | 0.004 1 | 0.61 | 0.96 |
3 | 0.50 | 0.073 | -45 | 0.66 | |
气体质量流量 | 2 | 0.27 | 0.077 | -5.4 | 0.77 |
3 | 0.12 | 0.003 7 | -2.1 | 0.97 |
Tab. 3 Effect of online calibration on goodness-of-fit indicators
所属映射 | 节点编号 | EMAPE | R2 | ||
---|---|---|---|---|---|
未校正 | 校正 | 未校正 | 校正 | ||
气体压强 | 2 | 0.009 7 | 0.004 1 | 0.61 | 0.96 |
3 | 0.50 | 0.073 | -45 | 0.66 | |
气体质量流量 | 2 | 0.27 | 0.077 | -5.4 | 0.77 |
3 | 0.12 | 0.003 7 | -2.1 | 0.97 |
1 | FANG J, ZENG Q, AI X,et al .Dynamic optimal energy flow in the integrated natural gas and electrical power systems[J].IEEE Transactions on Sustainable Energy,2018,9(1):188-198. doi:10.1109/tste.2017.2717600 |
2 | HAFSI Z, ELAOUD S, MISHRA M .A computational modelling of natural gas flow in looped network:effect of upstream hydrogen injection on the structural integrity of gas pipelines[J].Journal of Natural Gas Science and Engineering,2019,64:107-117. doi:10.1016/j.jngse.2019.01.021 |
3 | QI F, SHAHIDEHPOUR M, WEN F,et al . Decentralized privacy-preserving operation of multi-area integrated electricity and natural gas systems with renewable energy resources[J].IEEE Transactions on Sustainable Energy,2020,11(3):1785-1796. doi:10.1109/tste.2019.2940624 |
4 | YANG J, ZHANG N, BOTTERUD A,et al .Situation awareness of electricity-gas coupled systems with a multi-port equivalent gas network model[J].Applied Energy,2020,258:114029. doi:10.1016/j.apenergy.2019.114029 |
5 | LIU W, LI P, YANG W,et al .Optimal energy flow for integrated energy systems considering gas transients[J].IEEE Transactions on Power Systems,2019,34(6):5076-5079. doi:10.1109/tpwrs.2019.2929685 |
6 | SUKHAREV M G, KULALAEVA M A .Identification of model flow parameters and model coefficients with the help of integrated measurements of pipeline system operation parameters[J].Energy,2021,232:120864. doi:10.1016/j.energy.2021.120864 |
7 | YIN X, WEN K, HUANG W,et al .A high-accuracy online transient simulation framework of natural gas pipeline network by integrating physics-based and data-driven methods[J].Applied Energy,2023,333:120615. doi:10.1016/j.apenergy.2022.120615 |
8 | FAN D, GONG J, ZHANG S,et al .A transient composition tracking method for natural gas pipe networks[J].Energy,2021,215:119131. doi:10.1016/j.energy.2020.119131 |
9 | 杨宇玄,高栋梁,陈一鸣,等 .考虑碳捕集和气网混氢的气电耦合系统低碳经济调度[J].中国电力,2023,56(10):1-10. |
YANG Y X, GAO D L, CHEN Y M,et al .Low carbon economic dispatch of gas electricity coupling system considering carbon capture and hydrogen mixing in gas grid[J].Electric Power,2023,56(10):1-10. | |
10 | 陈茂云,郑建勇,梅飞,等 .考虑压缩机不同运行状态的IES气网潮流分布式计算方法[J].电力工程技术,2023,42(4):122-132. |
CHEN M Y, ZHENG J Y, MEI F,et al .Distributed algorithm for the power flow calculation of gas network in integrated energy system considering different operation states of compressors[J].Electric Power Engineering Technology,2023,542(4):122-132. | |
11 | GABRIELAITIENE I, BØHM B, SUNDEN B .Modelling temperature dynamics of a district heating system in naestved,Denmark:a case study[J].Energy Conversion and Management,2007,48(1):78-86. doi:10.1016/j.enconman.2006.05.011 |
12 | RÍOS-MERCADO R Z, BORRAZ-SÁNCHEZ C .Optimization problems in natural gas transportation systems:a state-of-the-art review[J].Applied Energy,2015,147:536-555. doi:10.1016/j.apenergy.2015.03.017 |
13 | WOLDEYOHANNES A D, MAJID M A A .Simulation model for natural gas transmission pipeline network system[J].Simulation Modelling Practice and Theory,2011,19(1):196-212. doi:10.1016/j.simpat.2010.06.006 |
14 | CHACZYKOWSKI M .Transient flow in natural gas pipeline:the effect of pipeline thermal model[J].Applied Mathematical Modelling,2010,34(4):1051-1067. doi:10.1016/j.apm.2009.07.017 |
15 | 蒋一博 .气-电区域综合能源系统协调优化运行策略研究[D].武汉:武汉大学,2019. |
JIANG Y B .Study on coordinated and optimized operation strategy of comprehensive energy system in gas-electricity region[D].Wuhan:Wuhan University,2019. | |
16 | GOURLAY A R, MORRIS J L .Finite-difference methods for nonlinear hyperbolic systems[J].Mathematics of Computation,1968:28-39. doi:10.2307/2004760 |
17 | YAO S, GU W, LU S,et al .Dynamic optimal energy flow in the heat and electricity integrated energy system[J].IEEE Transactions on Sustainable Energy,2021,12(1):179-190. doi:10.1109/tste.2020.2988682 |
18 | BOYD S P, VANDENBERGHE L .Convex optimization[M].Cambridge,UK:Cambridge Press,2004. doi:10.1017/cbo9780511804441 |
19 | ZHANG S, GU W, ZHANG X,et al .Dynamic modeling and simulation of integrated electricity and gas systems[J].IEEE Transactions on Smart Grid,2023,14(2):1011-1026. doi:10.1109/tsg.2022.3203485 |
20 | KJAER A P, HEATH W P, WELLSTEAD P E .Identification of cross-directional behaviour in web production:techniques and experience[J].Control Engineering Practice,1995,3(1):21-29. doi:10.1016/0967-0661(94)00060-t |
21 | BADONI M, SINGH A, SINGH B .Variable forgetting factor recursive least square control algorithm for DSTATCOM[J].IEEE Transactions on Power Delivery,2015,30(5):2353-2361. doi:10.1109/tpwrd.2015.2422139 |
22 | BROSCH A, WALLSCHEID O, BOCKER J .Long-term memory recursive least squares online identification of highly utilized permanent magnet synchronous motors for finite-control-set model predictive control[J].IEEE Transactions on Power Electronics,2023,38(2):1451-1467. doi:10.1109/tpel.2022.3206598 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||