1 |
LUO X W, JI B, TSUJIMOTO Y .A review of cavitation in hydraulic machinery[J].Journal of Hydrodynamics,2016,28(3):335-358. doi:10.1016/s1001-6058(16)60638-8
|
2 |
ESCALER X, EGUSQUIZA E, FARHAT M,et al .Detection of cavitation in hydraulic turbines[J].Mechanical Systems and Signal Processing,2006,20(4):983-1007. doi:10.1016/j.ymssp.2004.08.006
|
3 |
RUS T, DULAR M, ŠIROK B,et al .An investigation of the relationship between acoustic emission,vibration,noise,and cavitation structures on a kaplan turbine[J].Journal of Fluids Engineering,2007,129(9):1112-1122. doi:10.1115/1.2754313
|
4 |
刘忠,王文豪,邹淑云,等 .水轮机空化声发射信号的联合降噪与特征提取[J].水力发电学报,2022,41(12):145-152.
|
|
LIU Z, WANG W H, ZOU S Y,et al .Joint noise reduction and feature extraction of acoustic emission signals for hydraulic turbines under cavitation[J].Journal of Hydroelectric Engineering,2022,41(12):145-152.
|
5 |
刘君,邓毅,杨延西,等 .基于深度学习的空预器转子红外补光图像积灰状态识别[J].发电技术,2022,43(3):510-517. doi:10.12096/j.2096-4528.pgt.20122
|
|
LIU J, DEND Y, YANG Y X,et al .Ash accumulation state identification for infrared compensation images of air preheater rotor based on deep learning method[J].Power Generation Technology,2022,43(3):510-517. doi:10.12096/j.2096-4528.pgt.20122
|
6 |
武霁阳,李强,陈潜,等 .知识图谱框架下基于深度学习的HVDC系统故障辨识[J].电力系统保护与控制,2023,51(20):160-169.
|
|
WU J Y, LI Q, CHEN Q,et al .Fault identification of an HVDC system based on deep learning in the framework of a knowledge graph[J].Power System Protection and Control,2023,51(20):160-169.
|
7 |
皮志勇,朱益,廖玄,等 .基于深度学习的智能变电站通信链路故障定位方法[J].中国电力,2023,56(7):136-145.
|
|
PI Z Y, ZHU Y, LIAO X,et al .Fault location method for communication link in smart substation based on deep learning[J].Electric Power,2023,56(7):136-145.
|
8 |
封钰,宋佑斌,金晟,等 .基于随机森林算法和粗糙集理论的改进型深度学习短期负荷预测模型[J].发电技术,2023,44(6):889-895. doi:10.12096/j.2096-4528.pgt.23013
|
|
FENG Y, SONG Y B, JIN S,et al .Improved deep learning model for forecasting short-term load based on random forest algorithm and rough set theory[J].Power Generation Technology,2023,44(6):889-895. doi:10.12096/j.2096-4528.pgt.23013
|
9 |
褚雪汝,陈中,吴聪颖,等 .基于深度学习的电气二次图纸语义识别方法[J].浙江电力,2023,42(8):1-11.
|
|
CHU X R, CHEN Z, WU C Y,et al .Small target area extraction and semantic recognition method of electrical secondary drawings based on deep learning[J].Zhejiang Electric Power,2023,42(8):1-11.
|
10 |
钱进宝,刘晓光,蔡玺,等 .基于自适应学习率卷积神经网络的新型配电网源网荷储无功协调优化技术[J].可再生能源,2024,42(2):267-275.
|
|
QIAN J B, LIU X G, CAI X,et al .Reactive power coordination optimization technology for source-network-load-storage in new distribution network based on adaptive learning rate convolutional neural network[J].Renewable Energy Resources,2024,42(2):267-275.
|
11 |
连华,刘明浩 .基于多时间尺度卷积神经网络的煤改电用户负荷识别方法研究[J].电网与清洁能源,2023,39(7):35-43. doi:10.3969/j.issn.1674-3814.2023.07.005
|
|
LIAN H, LIU M H .A model of load identification for coal-to-power customers based on multi-time scale convolutional neural networks[J].Power System and Clean Energy,2023,39(7):35-43. doi:10.3969/j.issn.1674-3814.2023.07.005
|
12 |
娄奇鹤,李荣盛,谭捷,等 .基于卷积神经网络的暂稳极限功率计算[J].中国电力,2024,57(4):211-219.
|
|
LOU Q H, LI R S, TAN J,et al .Calculation of transient stability limit based on convolutional neural network[J].Electric Power,2024,57(4):211-219.
|
13 |
李欣,付豫韬,李新宇,等 .基于GAF-CNN的电力系统暂态稳定评估[J].智慧电力,2023,51(11):45-52.
|
|
LI X, FU Y T, LI X Y,et al .Power system transient stability assessment based on GAF-CNN[J].Smart Power,2023,51(11):45-52.
|
14 |
WEN L, LI X Y, GAO L,et al .A new convolutional neural network-based data-driven fault diagnosis method[J].IEEE Transactions on Industrial Electronics,2018,65(7):5990-5998. doi:10.1109/tie.2017.2774777
|
15 |
XU C J, GUAN J J, BAO M,et al .Pattern recognition based on time-frequency analysis and convolutional neural networks for vibrational events in φ-OTDR[J].Optical Engineering,2018,57(1):016103. doi:10.1117/1.oe.57.1.016103
|
16 |
贾春阳,曹庆皎,王利英,等 .基于卷积神经网络优化的水轮机振动信号识别[J].噪声与振动控制,2023,43(1):93-99. doi:10.3969/j.issn.1006-1355.2023.01.016
|
|
JIA C Y, CAO Q J, WANG L Y,et al .Hydraulic turbine vibration signal recognition based on convolutional neural network optimization[J].Noise and Vibration Control,2023,43(1):93-99. doi:10.3969/j.issn.1006-1355.2023.01.016
|
17 |
董光德,李道明,陈咏涛,等 .基于粒子群优化与卷积神经网络的电能质量扰动分类方法[J].发电技术,2023,44(1):136-142. doi:10.12096/j.2096-4528.pgt.22004
|
|
DONG G D, LI D M, CHEN Y T,et al .Power quality disturbance classification method based on particle swarm optimization and convolutional neural network[J].Power Generation Technology,2023,44(1):136-142. doi:10.12096/j.2096-4528.pgt.22004
|
18 |
HINTON G, VINYALS O, DEAN J .Distilling the knowledge in a neural network[EB/OL].(2015-03-09)[2023-06-05]..
|
19 |
MOHIELDEEN ALABBASY F, ABOHAMAMA A S, ALRAHMAWY M F .Compressing medical deep neural network models for edge devices using knowledge distillation[J].Journal of King Saud University:Computer and Information Sciences,2023,35(7):101616. doi:10.1016/j.jksuci.2023.101616
|
20 |
王成林 .基于知识蒸馏和深度可分离卷积的轴承故障轻量化诊断[J].噪声与振动控制,2023,43(3):139-144. doi:10.3969/j.issn.1006-1355.2023.03.022
|
|
WANG C L .Lightweight diagnosis for bearing faults based on knowledge distillation and deep separable convolution[J].Noise and Vibration Control,2023,43(3):139-144. doi:10.3969/j.issn.1006-1355.2023.03.022
|
21 |
ZHANG W F, BISWAS G, ZHAO Q,et al .Knowledge distilling based model compression and feature learning in fault diagnosis[J].Applied Soft Computing,2020,88:105958. doi:10.1016/j.asoc.2019.105958
|
22 |
JI M Y, PENG G L, LI S J,et al .A neural network compression method based on knowledge-distillation and parameter quantization for the bearing fault diagnosis[J].Applied Soft Computing,2022,127:109331. doi:10.1016/j.asoc.2022.109331
|
23 |
张哲,秦博宇,高鑫,等 .基于CNN-LSTM网络的电网电压稳定紧急控制策略[J].电力系统自动化,2023,47(11):60-68. doi:10.7500/AEPS20220712005
|
|
ZHANG Z, QIN B Y, GAO X,et al .Emergency control strategy of power grid voltage stability based on convolutional neural network and long short-term memory network[J].Automation of Electric Power Systems,2023,47(11):60-68. doi:10.7500/AEPS20220712005
|
24 |
LIU Y, ZHANG W, WANG J .Adaptive multi-teacher multi-level knowledge distillation[J].Neurocomputing,2020,415:106-113. doi:10.1016/j.neucom.2020.07.048
|
25 |
刘忠,邹淑云,陈莹,等 .混流式水轮机模型空化状态与声发射信号特征关系试验[J].动力工程学报,2016,36(12):1017-1022.
|
|
LIU Z, ZOU S Y, CHEN Y,et al .Experiments on the relationship between cavitation status and acoustic emission signal features for a francis turbine model[J].Journal of Chinese Society of Power Engineering,2016,36(12):1017-1022.
|