Power Generation Technology ›› 2024, Vol. 45 ›› Issue (3): 558-565.DOI: 10.12096/j.2096-4528.pgt.24003
• Smart Grid • Previous Articles Next Articles
Menghan JIA1, Gang LIU1, Shijie XU2, Shuangying WU2
Received:
2024-03-11
Revised:
2024-05-01
Published:
2024-06-30
Online:
2024-07-01
Contact:
Gang LIU
Supported by:
CLC Number:
Menghan JIA, Gang LIU, Shijie XU, Shuangying WU. Heterogeneous Image Fusion Algorithm and Its Application in Power Facility Detection Research[J]. Power Generation Technology, 2024, 45(3): 558-565.
方法 | EN | VIF | MSE | SCD | MSSSIM | FMIpixel |
---|---|---|---|---|---|---|
CBF | 6.856 0 | 0.445 8 | 0.061 1 | 1.517 4 | 0.587 6 | 0.835 8 |
FusionGAN | 6.674 2 | 0.641 7 | 0.062 5 | 1.707 0 | 0.787 8 | 0.887 3 |
GANMcC | 6.859 2 | 0.759 9 | 0.056 6 | 1.864 1 | 0.899 1 | 0.898 8 |
RFN-Nest | 6.992 1 | 0.792 8 | 0.062 3 | 1.943 0 | 0.921 9 | 0.905 6 |
FPDE | 6.237 0 | 0.650 4 | 1.735 9 | 0.888 7 | 0.893 0 | |
LatLRR | 6.895 0 | 0.082 4 | 1.758 1 | 0.849 1 | 0.907 7 | |
U2Fusion | 0.683 1 | 0.055 4 | 1.923 6 | 0.935 5 | 0.896 6 | |
IFEVIP | 6.895 0 | 0.905 0 | 0.082 4 | 1.758 1 | 0.849 1 | |
Deepfuse | 6.157 4 | 0.880 2 | 0.045 0 | 1.737 4 | 0.884 0 | 0.906 6 |
Densefuse | 6.874 2 | 0.880 2 | 0.060 0 | 0.950 7 | 0.906 7 | |
本文算法 | 7.026 2 | 0.883 7 | 0.056 5 | 1.960 7 | 0.907 9 |
Tab. 1 Objective evaluation of comparative experiments
方法 | EN | VIF | MSE | SCD | MSSSIM | FMIpixel |
---|---|---|---|---|---|---|
CBF | 6.856 0 | 0.445 8 | 0.061 1 | 1.517 4 | 0.587 6 | 0.835 8 |
FusionGAN | 6.674 2 | 0.641 7 | 0.062 5 | 1.707 0 | 0.787 8 | 0.887 3 |
GANMcC | 6.859 2 | 0.759 9 | 0.056 6 | 1.864 1 | 0.899 1 | 0.898 8 |
RFN-Nest | 6.992 1 | 0.792 8 | 0.062 3 | 1.943 0 | 0.921 9 | 0.905 6 |
FPDE | 6.237 0 | 0.650 4 | 1.735 9 | 0.888 7 | 0.893 0 | |
LatLRR | 6.895 0 | 0.082 4 | 1.758 1 | 0.849 1 | 0.907 7 | |
U2Fusion | 0.683 1 | 0.055 4 | 1.923 6 | 0.935 5 | 0.896 6 | |
IFEVIP | 6.895 0 | 0.905 0 | 0.082 4 | 1.758 1 | 0.849 1 | |
Deepfuse | 6.157 4 | 0.880 2 | 0.045 0 | 1.737 4 | 0.884 0 | 0.906 6 |
Densefuse | 6.874 2 | 0.880 2 | 0.060 0 | 0.950 7 | 0.906 7 | |
本文算法 | 7.026 2 | 0.883 7 | 0.056 5 | 1.960 7 | 0.907 9 |
1 | 彭超逸,张昆,胡亚平,等 .动态监测系统在电力市场环境下的应用[J].发电技术,2021,42(5):595-603. doi:10.12096/j.2096-4528.pgt.20019 |
PENG C Y, ZHANG K, HU Y P,et al .Application of dynamic monitoring system in electric power market[J].Power Generation Technology,2021,42(5):595-603. doi:10.12096/j.2096-4528.pgt.20019 | |
2 | 王志伟,王伟,李德鑫,等 .冰灾天气下考虑输配协同的电-热联合系统韧性提升策略[J].电力建设,2024,45(5):9-18. doi:10.12204/j.issn.1000-7229.2024.05.002 |
WANG Z W, WANG W, LI D X,et al .Enhancing resilience in electric-heat combined system:coordinated approach for transmission and distribution network during ice disasters[J].Electric Power Construction,2024,45(5):9-18. doi:10.12204/j.issn.1000-7229.2024.05.002 | |
3 | 高伟,郭美青,张兴忠,等 .基于改进PP-YOLOv2的红外图像电力设备检测[J].计算机仿真,2023,40(9):81-87. doi:10.3969/j.issn.1006-9348.2023.09.016 |
GAO W, GUO M Q, ZHANG X Z,et al .Infrared image power equipment detection based on improved PP-YOLOv2[J].Computer Simulation,2019,40(9):81-87. doi:10.3969/j.issn.1006-9348.2023.09.016 | |
4 | 彭曙蓉,刘登港,何洁妮,等 .基于改进YOLOv4的架空线路电力设备故障检测[J].电力科学与技术学报,2023,38(5):169-176. |
FENG S R, LIU D G, HE J N,et al .Fault detection for overhead line power equipment based on improved YOLOv4[J].Journal of Electric Power Science and Technology,2023,38(5):169-176. | |
5 | 杨俊,高昱峰,张可,等 .基于图像边缘检测和法向探测的导线覆冰监测方法[J].电网与清洁能源,2023,39(2):24-32. doi:10.3969/j.issn.1674-3814.2023.02.004 |
YANG J, GAO Y F, ZHANG K,et al .A conductor icing monitoring method based on image edge detection and normal direction detection[J].Power System and Clean Energy,2023,39(2):24-32. doi:10.3969/j.issn.1674-3814.2023.02.004 | |
6 | 袁朝晖,付文龙,李佰霖,等 .基于多策略分割融合与形态特征辨识的变电站保护压板状态识别[J].电力系统保护与控制,2022,50(1):98-106. |
YUAN Z H, FU W L, LI B L,et al .Protection platen status recognition for a smart substation based on multi-strategy segmentation and fusion and morphological feature identification[J].Power System Protection and Control,2022,50(1):98-106. | |
7 | 张少平 .输电线路典型目标图像识别技术研[D].南京:南京航空航天大学,2012. |
ZHANG S P .Research on typical target image recognition technology of transmission lines[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2012. | |
8 | 方明,孙晓敏,黄然,等 .面向高分辨率卫星遥感的电力杆塔自动检测[J].航天返回与遥感,2021,42(5):118-126. doi:10.3969/j.issn.1009-8518.2021.05.013 |
FANG M, SUN X M, HUANG R,et al .Automatic power tower detection for high-resolution satellite Remote sensing[J].Space Return and Remote Sensing,2021,42(5):118-126. doi:10.3969/j.issn.1009-8518.2021.05.013 | |
9 | 史晋涛,李喆,顾超越,等 .基于样本扩充的Faster R-CNN电网异物监测技术[J].电网技术,2020,44(1):44-51. |
SHI J T, LI Z, GU C Y,et al .Faster R-CNN foreign body monitoring technology based on sample expansion[J].Power Grid Technology,2020,44(1):44-51. | |
10 | 郑鑫,潘斌,张健 .可变形网络与迁移学习相结合的电力塔遥感影像目标检测法[J].测绘学报,2020,49(8):1042-1050. doi:10.11947/j.AGCS.2020.20190356 |
ZHENG X, PAN B, ZHANG J .Remote sensing image detection method of power tower based on deformable network and transfer learning[J].Journal of Surveying and Mapping,2020,49(8):1042-1050. doi:10.11947/j.AGCS.2020.20190356 | |
11 | 胡青云,黄应敏,许翠珊,等 .基于深度神经网络的电力电缆故障检测方法研究[J].电子设计工程,2020,28(24):165-168. |
HU Q Y, HUANG Y M, XU C S,et al .Research on power cable fault detection method based on deep neural network[J].Electronic Design Engineering,2020,28(24):165-168. | |
12 | DAVARI N, AKBARIZADEH G, MASHHOUR E .Intelligent diagnosis of incipient fault in power distribution lines based on corona detection in UV-visible videos[J].IEEE Transactions on Power Delivery,2020,36(6):3640-3648. doi:10.1109/tpwrd.2020.3046161 |
13 | 李金恒 .基于卷积神经网络的电力设备红外图像检测方法研究[D].南宁:广西大学,2021. |
LI J H .Research on infrared image detection method of power equipment based on convolutional neural network[D].Nanning:Guangxi University,2021. | |
14 | 王刘旺 .机器视觉技术在电力安全监控中的应用综述[J].浙江电力,2022,41(10):16-26. |
WANG L W .Areview of the application of machine vision in power safety monitoring[J].Zhejiang Electric Power,2022,41(10):16-26. | |
15 | 刘君,邓毅,杨延西,等 .基于深度学习的空预器转子红外补光图像积灰状态识别[J].发电技术,2022,43(3):510-517. doi:10.12096/j.2096-4528.pgt.20122 |
LIU J, DENG Y, YANG Y X,et al .Ash accumulation state identification for infrared compensation images of air preheater rotor based on deep learning method[J].Power Generation Technology,2022,43(3):510-517. doi:10.12096/j.2096-4528.pgt.20122 | |
16 | 张峰 .面向电力设备故障检测的红外与可见光图像融合算法研究[D].石家庄:石家庄铁道大学,2023. |
ZHANG F .Research on infrared and visible light image fusion algorithm for power equipment fault detection[D].Shijiazhuang:Shijiazhuang Tiedao University,2023. | |
17 | 郭子琦 .红外与可见光图像融合方法及在电力设备监测的应用研究[D].长沙:长沙理工大学,2022. doi:10.1016/j.infrared.2022.104178 |
GUO Z Q .Research on infrared and visible image fusion method and its application in power equipment monitoring[D].Changsha:Changsha University of Science & Technology,2022. doi:10.1016/j.infrared.2022.104178 | |
18 | MA J, MA Y, LI C .Infrared and visible image fusion methods and applications:a survey[J].Information Fusion,2019,45:153-178. doi:10.1016/j.inffus.2018.02.004 |
19 | WANG J, PENG J, FENG X,et al .Fusion method for infrared and visible images by using non-negative sparse representation[J].Infrared Physics & Technology,2014,67:477-489. doi:10.1016/j.infrared.2014.09.019 |
20 | SINGH R, VATSA M, NOORE A .Integrated multilevel image fusion and match score fusion of visible and infrared face images for robust face recognition[J].Pattern Recognition,2008,41(3):880-893. doi:10.1016/j.patcog.2007.06.022 |
21 | MA J, TANG L, XU M,et al .STDFusionNet:an infrared and visible image fusion network based on salient target detection[J].IEEE Transactions on Instrumentation and Measurement,2021,70:1-13. doi:10.1109/tim.2021.3075747 |
22 | ZHANG Y, ZHANG L, BAI X,et al .Infrared and visual image fusion through infrared feature extraction and visual information preservation[J].Infrared Physics & Technology,2017,83:227-237. doi:10.1016/j.infrared.2017.05.007 |
23 | KUMAR B S .Image fusion based on pixel significance using cross bilateral filter[J].Signal,Image and Video Processing,2015,9(5):1193-1204. doi:10.1007/s11760-013-0556-9 |
24 | BAVIRISETTI D P, XIAO G, LIU G .Multi-sensor image fusion based on fourth order partial differential equations[C]//2017 20th International Conference on Information Fusion,Xi’an,China:IEEE,2017:1-9. doi:10.23919/icif.2017.8009719 |
25 | LI H, WU X J .Infrared and visible image fusion using latent low-rank representation[J].ArXiv,2018,4:8992. |
26 | LI H, WU X J .DenseFuse:a fusion approach to infrared and visible images[J].IEEE Transactions on Image Processing,2018,28(5):2614-2623. doi:10.1109/tip.2018.2887342 |
27 | PRABHAKAR K R, SRIKAR V S, BABU R V .Deepfuse:a deep unsupervised approach for exposure fusion with extreme exposure image pairs[C]//Proceedings of 2017 IEEE International Conference on Computer Vision.Venice,Italy:IEEE,2017:4724-4732. doi:10.1109/iccv.2017.505 |
28 | MA J, YU W, LIANG P,et al .FusionGAN:a generative adversarial network for infrared and visible image fusion[J].Information Fusion,2019,48:11-26. doi:10.1016/j.inffus.2018.09.004 |
29 | LI H, WU X J, KITTLER J .RFN-Nest:an end-to-end residual fusion network for infrared and visible images[J].Information Fusion,2021,73:72-86. doi:10.1016/j.inffus.2021.02.023 |
30 | MA J, ZHANG H, SHAO Z,et al .GANMcC:a generative adversarial network with multiclassification constraints for infrared and visible image fusion[J].IEEE Transactions on Instrumentation and Measurement,2020,70:1-14. doi:10.1109/tim.2020.3038013 |
31 | XU H, MA J, JIANG J,et al .U2Fusion:a unified unsupervised image fusion network[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(1):502-518. doi:10.1109/tpami.2020.3012548 |
32 | XU X, LIU G, BAVIRISETTI D P,et al .Fast detection fusion network (FDFnet):an end to end object detection framework based on heterogeneous image fusion for power facility inspection[J].IEEE Transactions on Power Delivery,2022,37(6):4496-4505. doi:10.1109/tpwrd.2022.3150110 |
33 | LI Y, NI M, LU Y .Insulator defect detection for power grid based on light correction enhancement and YOLOv5 model[J].Energy Reports,2022,8:807-814. doi:10.1016/j.egyr.2022.08.027 |
[1] | Yu FENG, Youbin SONG, Sheng JIN, Jiahuan FENG, Xuechen SHI, Yongjie YU, Xianchao HUANG. Improved Deep Learning Model for Forecasting Short-Term Load Based on Random Forest Algorithm and Rough Set Theory [J]. Power Generation Technology, 2023, 44(6): 889-895. |
[2] | Guangde DONG, Daoming LI, Yongtao CHEN, Xing MA, Ang FU, Gang MU, Bai XIAO. Power Quality Disturbance Classification Method Based on Particle Swarm Optimization and Convolutional Neural Network [J]. Power Generation Technology, 2023, 44(1): 136-142. |
[3] | Shangnian CHEN, Luping LI, Shihai ZHANG, Minnan OUYANG, Ang FAN, Xiankui WEN. Research Progress of Vibration Fault Diagnosis Technology for Steam Turbine Generator Sets [J]. Power Generation Technology, 2021, 42(4): 489-499. |
[4] | Guodong ZHANG,Haitao PU,Kai LIU. Fault Line Selection Method of Small Current Grounding System Based on Deep Learning [J]. Power Generation Technology, 2019, 40(6): 548-554. |
[5] | Xiangjun LI,Gejian XU. Wind Power Prediction Method Based on Long Short-term Memory Neural Network [J]. Power Generation Technology, 2019, 40(5): 426-433. |
[6] | Yongli ZHU,Xin SHI,Liuwang WANG. Recent Research Hotspot Introduction on the Application of Artificial Intelligence in Power System [J]. Power Generation Technology, 2018, 39(3): 204-212. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||