Power Generation Technology ›› 2022, Vol. 43 ›› Issue (1): 73-82.DOI: 10.12096/j.2096-4528.pgt.21040
• Energy Storage • Previous Articles Next Articles
Xinru GUO1, Yumin GUO1, Fang LUO2, Jiangfeng WANG1, Pan ZHAO1
Received:
2021-08-21
Published:
2022-02-28
Online:
2022-03-18
Supported by:
CLC Number:
Xinru GUO, Yumin GUO, Fang LUO, Jiangfeng WANG, Pan ZHAO. Analysis of Energy, Exergy and Ecology Characteristics of Phosphoric Acid Fuel Cell[J]. Power Generation Technology, 2022, 43(1): 73-82.
i | ||||||
---|---|---|---|---|---|---|
H2(g) | 0 | 0 | 131 | 27.28+0.003 26T+50 000/T2 | — | 236 090 |
O2(g) | 0 | 0 | 205 | 29.96+0.004 18T-167 000/T2 | — | 3 970 |
H2O(g) | — | — | — | 30.00+0.010 17T+33 000/T2 | 40 700 | — |
H2O(l) | 237 200 | 285 800 | 70 | 75.44 | — | 9 500 |
Tab. 1 Thermodynamic parameters for H2, O2 and H2O
i | ||||||
---|---|---|---|---|---|---|
H2(g) | 0 | 0 | 131 | 27.28+0.003 26T+50 000/T2 | — | 236 090 |
O2(g) | 0 | 0 | 205 | 29.96+0.004 18T-167 000/T2 | — | 3 970 |
H2O(g) | — | — | — | 30.00+0.010 17T+33 000/T2 | 40 700 | — |
H2O(l) | 237 200 | 285 800 | 70 | 75.44 | — | 9 500 |
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
F/(C·mol-1) | 96 485 | 0.000 03 | |
R/(J·mol-1·K-1) | 8.314 | 0.000 8 | |
2 | α | 0.5 | |
p/Pa | 101 325 | j0/(A·m-2) | 0.06 |
T/K | 453 | tele/m | 0.002 |
T0/K | 298 | A/m2 | 0.001 5 |
Tab. 2 Parameters of PAFC system
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
F/(C·mol-1) | 96 485 | 0.000 03 | |
R/(J·mol-1·K-1) | 8.314 | 0.000 8 | |
2 | α | 0.5 | |
p/Pa | 101 325 | j0/(A·m-2) | 0.06 |
T/K | 453 | tele/m | 0.002 |
T0/K | 298 | A/m2 | 0.001 5 |
i | ||||
---|---|---|---|---|
增率/% | 29.3 | -55.1 | 29.1 | 66.7 |
P | 43.7 | 7 629.1 | 44.4 | 1.2 |
E | 56.5 | 3 425.5 | 57.3 | 2.0 |
Tab. 3 Comparison of some key performance parameters
i | ||||
---|---|---|---|---|
增率/% | 29.3 | -55.1 | 29.1 | 66.7 |
P | 43.7 | 7 629.1 | 44.4 | 1.2 |
E | 56.5 | 3 425.5 | 57.3 | 2.0 |
1 | 刘旭坡,张运丰,邓邵峰,等 .燃料电池用聚合物质子交换膜的研究进展[J].电化学,2020,26(1):103-120. doi:10.13208/j.electrochem.181217 |
LIU X, ZHANG Y, DENG S,et al .Research progresses in polymeric proton exchange membranes for fuel cells[J].Journal of Electrochemistry,2020,26(1):103-120. doi:10.13208/j.electrochem.181217 | |
2 | MORADI M, MEHRPOOYA M .Optimal design and economic analysis of a hybrid solid oxide fuel cell and parabolic solar dish collector,combined cooling,heating and power (CCHP) system used for a large commercial tower[J].Energy,2017,130(1):530-543. doi:10.1016/j.energy.2017.05.001 |
3 | 薛晓东,韩巍,王晓东,等 .适合分布式冷热电联供系统的中小型发电装置[J].发电技术,2020,41(3):252-260. doi:10.12096/j.2096-4528.pgt.20031 |
XUE X D, HAN W, WANG X D,et al .Small and medium-scale power generation devices suiting for distributed combined cooling, heating and power system[J].Power Generation Technology,2020,41(3):252-260. doi:10.12096/j.2096-4528.pgt.20031 | |
4 | 张伟,向洪坤 .燃料电池汽车基本技术及发展综述[J].智慧电力,2020,48(4):36-41. doi:10.3969/j.issn.1673-7598.2020.04.006 |
ZHANG W, XIANG H K .Review on basic technology and development of fuel cell vehicle[J].Smart Power,2020,48(4):36-41. doi:10.3969/j.issn.1673-7598.2020.04.006 | |
5 | 陈骞,周竞,陆翌,等 .一种适用于燃料电池-超级电容发电系统的控制策略[J].浙江电力,2021,40(1):116-122. |
CHEN Q, ZHOU J, LU Y,et al .A control strategy for fuel cell-ultracapacitor power generation system[J].Zhejiang Electric Power,2021,40(1):116-122. | |
6 | WILAILAK S, YANG J H, HEO C G,et al .Thermo-economic analysis of phosphoric acid fuel-cell (PAFC) integrated with organic ranking cycle (ORC)[J].Energy,2021,220(1):119744. doi:10.1016/j.energy.2020.119744 |
7 | ITO H .Economic and environmental assessment of phosphoric acid fuel cell-based combined heat and power system for an apartment complex[J].International Journal of Hydrogen Energy,2017,42(23):15449-15463. doi:10.1016/j.ijhydene.2017.05.038 |
8 | WANG S, JIANG S P .Prospects of fuel cell technologies[J].National Science Review,2017,4(2):163-166. doi:10.1093/nsr/nww099 |
9 | SONG R H, KIM C S, SHIN D R .Effects of flow rate and starvation of reactant gases on the performance of phosphoric acid fuel cells[J].Journal of Power Sources,2000,86(1/2):289-293. doi:10.1016/s0378-7753(99)00450-4 |
10 | DHEENADAYALAN S, SONG R H, SHIN D R .Characterization and performance analysis of silicon carbide electrolyte matrix of phosphoric acid fuel cell prepared by ball-milling method[J].Journal of Power Sources,2002,107(1):98-102. doi:10.1016/s0378-7753(01)00991-0 |
11 | NEERGAT M, SHUKLA A K .A high-performance phosphoric acid fuel cell[J].Journal of Power Sources,2001,102(1/2):317-321. doi:10.1016/s0378-7753(01)00766-2 |
12 | SEO S J, JOH H I, KIM H T,et al .Properties of Pt/C catalyst modified by chemical vapour deposition of Cr as a cathode of phosphoric acid fuel cell [J].Electrochim Acta,2006,52(4):1676-1682. doi:10.1016/j.electacta.2006.03.104 |
13 | ZERVAS P L, KOUKOU M K, MARKATOS N C .Predicting the effects of process parameters on the performance of phosphoric acid fuel cells using a 3-D numerical approach[J].Energy Conversion and Management,2006,47(18/19):2883-2899. doi:10.1016/j.enconman.2006.03.030 |
14 | PYUN S I, LEE S B .Effect of surface groups on the electro catalytic behaviour of Pt-Fe-Co alloy-dispersed carbon electrodes in the phosphoric fuel cell[J].Journal of Power Sources,1999,77(2):170-177. doi:10.1016/s0378-7753(98)00191-8 |
15 | LAN R, XU X, TAO S,et al . A fuel cell operating between room temperature and 250 ℃ based on a new phosphoric acid based composite electrolyte[J].Journal of Power Sources,2010,195(20):6983-6987. doi:10.1016/j.jpowsour.2010.04.076 |
16 | CHOUDHURY S R, DESHMUKH M B, RENGASWAMY R .A two dimensional steady-state model for phosphoric acid fuel cells (PAFC)[J].Journal of Power Sources,2002,112(1):137-152. doi:10.1016/s0378-7753(02)00369-5 |
17 | GHOUSE M, ABAOUD H, AL-BOEIZ A,et al .Development of a 1 kW phosphoric acid fuel cell stack[J].Applied Energy,1998,60(3):153-167. doi:10.1016/s0306-2619(98)00031-2 |
18 | ASCOLI A, PANDYA J D, REDAELLI G .Electrical characterization of a 2.5 kW phosphoric acid fuel cell stack operating on simulated reformed biogas[J].Energy,1989,14(12):875-878. doi:10.1016/0360-5442(89)90042-x |
19 | PATHAK S, DAS J N, RANGARAJAN J,et al .Development of prototype phosphoric acid fuel cell pick-up electric vehicle[C]//IEEE Electric and Hybrid Vehicles,December 18-20,2006,Pune,India:IEEE,2006:9529652. doi:10.1109/icehv.2006.352292 |
20 | SUN Q, LIN D, KHAYATNEZHAD M,et al .Investigation of phosphoric acid fuel cell, linear Fresnel solar reflector and organic Rankine cycle polygeneration energy system in different climatic conditions[J].Process Safety and Environmental Protection,2021,147(3):993-1008. doi:10.1016/j.psep.2021.01.035 |
21 | CHAN S H, LOW C F, DING O L .Energy and exergy analysis of simple solid-oxide fuel-cell power systems[J].Journal of Power Sources,2002,103(2):188-200. doi:10.1016/s0378-7753(01)00842-4 |
22 | HUSSAIN M M, BASCHUK J J, LI X,et al .Thermodynamic analysis of a PEM fuel cell power system[J].International Journal of Thermal Sciences,2005,44(9):903-9011. doi:10.1016/j.ijthermalsci.2005.02.009 |
23 | BARELLI L, BIDINI G, GALLORINI F,et al .An energetic/exergetic analysis of a residential CHP system based on PEM fuel cell[J].Applied Energy,2011,88(12):4334-4342. doi:10.1016/j.apenergy.2011.04.059 |
24 | ANGULO-BROWN F .An ecological optimization criterion for finite-time heat engines[J].Journal of Applied Physics,1991,69(11):7465-7469. doi:10.1063/1.347562 |
25 | TYAGI S, KAUSHIK S, SALHOTRA R .Ecological optimization and performance study of irreversible Stirling and Ericsson heat engines[J].Journal of Physics D:Applied Physics,2002,35(20):2668. doi:10.1088/0022-3727/35/20/330 |
26 | CHENG C Y .Ecological optimization of an irreversible Brayton heat engine[J].Journal of Physics D:Applied Physics,1999,32(3):350. doi:10.1088/0022-3727/32/3/024 |
27 | CHEN T H .Ecological optimization of quantum spin-1/2 heat engine at the classical limit[J].Journal of Physics D:Applied Physics,2006,39(7):1442-1450. doi:10.1088/0022-3727/39/7/016 |
28 | LONG R, LI B, LIU Z,et al .Ecological analysis of a thermally regenerative electrochemical cycle[J].Energy,2016,107(15):95-102. doi:10.1016/j.energy.2016.04.004 |
29 | GUO Y, GUO X, ZHANG H,et al .Energetic,exergetic and ecological analyses of a high-temperature proton exchange membrane fuel cell based on a phosphoric- acid-doped polybenzimidazole membrane [J].Sustainable Energy Technologies and Assessments,2020,38:100671. doi:10.1016/j.seta.2020.100671 |
30 | WU M, ZHANG H, ZHAO J,et al .Performance analyses of an integrated phosphoric acid fuel cell and thermoelectric device system for power and cooling cogeneration[J].International Journal of Refrigeration,2018,89:61-69. doi:10.1016/j.ijrefrig.2018.02.018 |
31 | SHIN Y, PARK W, CHANG J,et al .Evaluation of the high temperature electrolysis of steam to produce hydrogen[J].International Journal of Hydrogen Energy,2007,32(10/11):1486-1491. doi:10.1016/j.ijhydene.2006.10.028 |
32 | ZHANG H, LIN G, CHEN J .Performance analysis and multiobjective optimization of a new molten carbonate fuel cell system[J].International Journal of Hydrogen Energy,2011,36(6):4015-4021. doi:10.1016/j.ijhydene.2010.12.103 |
33 | CHEN X, WANG Y, CAI L,et al .Maximum power output and load matching of a phosphoric acid fuel cell-thermoelectric generator hybrid system[J].Journal of Power Sources,2015,294:430-436. doi:10.1016/j.jpowsour.2015.06.085 |
34 | LEE W Y, KIM M, SOHN Y J,et al .Performance of a combined system consisting of a high-temperature polymer electrolyte fuel cell and an absorption refrigerator[J].Energy,2017,141(15):2397-2407. doi:10.1016/j.energy.2017.11.129 |
35 | AÇIKKALP E, AHMADI M H .Parametric investigation of phosphoric acid fuel cell-Thermally regenerative electro chemical hybrid system[J].Journal of Cleaner Production,2018,203:585-600. doi:10.1016/j.jclepro.2018.07.231 |
36 | WATOWICH S J, BERRY R S .Optimal current paths for model electrochemical system[J].Journal of Physical Chemistry,1986,90:4624-4631. doi:10.1021/j100410a031 |
37 | ZHANG H, LIN G, CHEN J .Multi-objective optimisation analysis and load matching of a phosphoric acid fuel cell system[J].International Journal of Hydrogen Energy,2012,37(4):3438-3446. doi:10.1016/j.ijhydene.2011.11.030 |
38 | CHIN A T, CHANG H H .On the conductivity of phosphoric acid electrolyte[J].Journal of Applied Electrochemistry,1989,19(1):95-99. doi:10.1007/bf01039396 |
39 | CHEN X, WANG Y, ZHAO Y,et al .A study of double functions and load matching of a phosphoric acid fuel cell/heat-driven refrigerator hybrid system[J].Energy,2016,101:359-365. doi:10.1016/j.energy.2016.02.029 |
40 | AÇIKKALP E .Performance assessment of phosphoric acid fuel cell-thermoelectric generator hybrid system with economic aspect[J].Journal of Thermal Engineering,2018,5(2):29-45. doi:10.18186/thermal.529072 |
41 | AL-SULAIMAN F A, DINCER I, HAMDULLAHPUR F .Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling,heating and power production[J].Journal of Power Sources,2010,195(8):2346-2354. doi:10.1016/j.jpowsour.2009.10.075 |
42 | DINCER I, HUSSAIN M M, AL-ZAHARNAH I .Energy and exergy utilization in agricultural sector of Saudi Arabia[J].Energy Policy,2005,33(11):1461-1467. doi:10.1016/j.enpol.2004.01.004 |
43 | SZARGUT J .Exergy method:technical and ecological applications[M].Ashurst:WIT Press,2005. |
44 | AL-SULAIMAN F A, DINCER I, HAMDULLAHPUR F .Energy and exergy analyses of a biomass trigeneration system using an organic Rankine cycle[J].Energy,2012,45(1):975-985. doi:10.1016/j.energy.2012.06.060 |
45 | UST Y, SAHIN B, KODAL A,et al .Ecological coefficient of performance analysis and optimization of an irreversible regenerative-Brayton heat engine[J].Applied Energy,2006,83(6):558-572. doi:10.1016/j.apenergy.2005.05.009 |
46 | UST Y, SAHIN B, SOGUT O S .Performance analysis and optimization of an irreversible dual-cycle based on an ecological coefficient of performance criterion[J].Applied Energy,2005,82(1):23-39. doi:10.1016/j.apenergy.2004.08.005 |
47 | WANG H S, CHANG C P, HUANG Y J,et al .A high-yield and ultra-low-temperature methanol reformer integratable with phosphoric acid fuel cell (PAFC)[J].Energy,2017,133:1142-1152. doi:10.1016/j.energy.2017.05.140 |
48 | SONG R H, SHIN D R .Influence of CO concentration and reactant gas pressure on cell performance in PAFC[J].International Journal of Hydrogen Energy,2001,26(12):1259-1262. doi:10.1016/s0360-3199(01)00064-7 |
49 | KIENITZ B .Optimizing polymer electrolyte membrane thickness to maximize fuel cell vehicle range[J].International Journal of Hydrogen Energy,2020,46(19):11176-11182. doi:10.1016/j.ijhydene.2020.03.126 |
[1] | Yanbing LI, Shuwang JIA, Junliang ZHANG, Yue FU, Ming LIU, Junjie YAN. Exergy Economic Analysis of Ultra-Supercritical Coal-Fired Power Plants With High-Level Layout of Turbine Under Load-Cycling Conditions [J]. Power Generation Technology, 2024, 45(1): 69-78. |
[2] | Hanxiao LIU, Gaofei GUO, Zhaomei CHEN. Study on WESP Multi-pollutant Emission Reduction and Energy Efficiency Test of Ultra-low Emission Unit [J]. Power Generation Technology, 2023, 44(1): 94-99. |
[3] | ABD-HAMID Mohamed, Longyu XIA, Gaosheng WEI, Liu CUI, Chao XU, Xiaoze DU. Performance Analysis of Photovoltaic/Thermal Hybrid System Integrated With Phase Change Heat Storage Materials [J]. Power Generation Technology, 2023, 44(1): 53-62. |
[4] | Yuxing WANG, Yanjie ZHAO, Zhanye YANG, Hurun ZHANG, Manni LIN. Optimization Analysis of a Combined Ejector-cooling and Power System [J]. Power Generation Technology, 2022, 43(6): 942-950. |
[5] | Yajuan LENG,Rui HU,Lin CUI,Yong DONG. Study on Energy Efficiency Characteristics of Wet Flue Gas Desulfurization Tower [J]. Power Generation Technology, 2020, 41(5): 543-551. |
[6] | Guohua QIU,Hongge WEI,Xiujin LIANG,Zhuang LI,Fengji WANG,Yue ZHU. Energy Consumption Analysis of Desulphurization Ultra-low Emission Operation and Outlook on Its Energy-saving Operation in Thermal Power Plants [J]. Power Generation Technology, 2020, 41(5): 510-516. |
[7] | LIN Dongchao, WANG Heng. Analysis of Energy Consumption Detection Method for Ice Storage System [J]. Power Generation Technology, 2017, 38(6): 64-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||