1 |
曲正伟,张嘉曦,王云静,等 .考虑分布式电源不确定性的配电网改进仿射状态估计[J].电力系统自动化,2021,45(23):104-112. doi:10.7500/AEPS20210302011
|
|
QU Z W, ZHANG J X, WANG Y J,et al .Improved affine state estimation for distribution network considering uncertainty of distributed generator[J].Automation of Electric Power Systems,2021,45(23):104-112. doi:10.7500/AEPS20210302011
|
2 |
SINGH G K .Power system harmonics research:a survey[J].European Transactions on Electrical Power,2009,19(2):151-172. doi:10.1002/etep.201
|
3 |
何国庆,王伟胜,刘纯,等 .分布式电源并网技术标准研究[J].中国电力,2020,53(4):1-12. doi:10.11930/j.issn.1004-9649.202002061
|
|
HE G Q, WANG W S, LIU C,et al .Study on technical standard of distributed resources grid integration[J].Electric Power,2020,53(4):1-12. doi:10.11930/j.issn.1004-9649.202002061
|
4 |
王燕 .电能质量扰动检测的研究综述[J].电力系统保护与控制,2021,49(13):174-186. doi:10.19783/j.cnki.pspc.201216
|
|
WANG Y .Review of research development in power quality disturbance detection[J].Power System Protection and Control,2021,49(13):174-186. doi:10.19783/j.cnki.pspc.201216
|
5 |
KOCHMANN J, MANJUNATHA K, GIERDEN C,et al .A simple and flexible model order reduction method for FFT-based homogenization problems using a sparse sampling technique[J].Computer Methods in Applied Mechanics and Engineering,2018,347:622-638. doi:10.1016/j.cma.2018.11.032
|
6 |
徐佳雄,张明,王阳,等 .基于改进HHT的电能质量扰动检测新方法[J].智慧电力,2021,49(1):1-8. doi:10.3969/j.issn.1673-7598.2021.01.001
|
|
XU J X, ZHANG M, WANG Y,et al .New method of power quality disturbance detection based on improved HHT[J].Smart Power,2021,49(1):1-8. doi:10.3969/j.issn.1673-7598.2021.01.001
|
7 |
苏寅生,李智勇,刘春晓,等 .基于小波-隐马尔可夫的波形异常扰动类型识别研究[J].电网与清洁能源,2021,37(4):53-59. doi:10.3969/j.issn.1674-3814.2021.04.008
|
|
SU Y S, LI Z Y, LIU C X,et al .Research on recognition of waveform abnormal disturbance types using wavelet-hidden markov models[J].Power System and Clean Energy,2021,37(4):53-59. doi:10.3969/j.issn.1674-3814.2021.04.008
|
8 |
程志友,杨猛 .基于二维离散余弦S变换的电能质量扰动类型识别[J].电力系统保护与控制,2021,49(17):85-92. doi:10.19783/j.cnki.pspc.201495
|
|
CHENG Z Y, YANG M .Power quality disturbance type identification based on a two-dimensional discrete cosine S-transform[J].Power System Protection and Control,2021,49(17):85-92. doi:10.19783/j.cnki.pspc.201495
|
9 |
高健,崔雪,邹晨露,等 .基于改进能量集中度的S变换与随机森林的电能质量扰动识别[J].电测与仪表,2019,56(1):8-14.
|
|
GAO J, CUI X, ZOU C L,et al .S-transform based on modified energy concentration and identification of power quality disturbance in random forest[J].Electrical Measurement & Instrumentation,2019,56(1):8-14.
|
10 |
黄南天,彭华,蔡国伟,等 .电能质量复合扰动特征选择与最优决策树构建[J].中国电机工程学报,2017,37(3):776-786. doi:10.13334/j.0258-8013.pcsee.160108
|
|
HUANG N T, PENG H, CAI G W,et al .Feature selection and optimal decision tree construction of complex power quality disturbances[J].Proceedings of the CSEE,2017,37(3):776-786. doi:10.13334/j.0258-8013.pcsee.160108
|
11 |
张明龙,张振宇,罗翔,等 .基于多核支持向量机的混合扰动波形辨识算法研究[J].电力系统保护与控制,2022,50(15):43-49.
|
|
ZHANG M L, ZHANG Z Y, LUO X,et al .Complex disturbance waveform recognition based on a multi-kernel support vector machine[J].Power System Protection and Control,2022,50(15):43-49.
|
12 |
奚鑫泽,邢超,覃日升,等 .基于多层特征融合注意力网络的电能质量扰动识别方法[J].智慧电力,2022,50(10):37-44. doi:10.3969/j.issn.1673-7598.2022.10.007
|
|
XI X Z, XING C, QIN R S,et al .Power quality disturbance recognition method based on multi-layer feature fusion attention network[J].Smart Power,2022,50(10):37-44. doi:10.3969/j.issn.1673-7598.2022.10.007
|
13 |
瞿合祚,刘恒,李晓明,等 .基于多标签随机森林的电能质量复合扰动分类方法[J].电力系统保护与控制,2017,45(11):1-7. doi:10.7667/PSPC160899
|
|
QU H Z, LIU H, LI X M,et al .Recognition of multiple power quality disturbances using multi-label random forest[J].Power System Protection and Control,2017,45(11):1-7. doi:10.7667/PSPC160899
|
14 |
何巨龙,王根平,刘丹,等 .基于提升小波和改进BP神经网络的配电网系统电能质量扰动定位与识别[J].电力系统保护与控制,2017,45(10):69-76. doi:10.7667/PSPC160684
|
|
HE J L, WANG G P, LIU D,et al .Localization and identification of power quality disturbance in distribution network system based on lifting wavelet and improved BP neural network[J].Power System Protection and Control,2017,45(10):69-76. doi:10.7667/PSPC160684
|
15 |
THIRUMALA K,PAL S, JAIN T,et al .A classification method for multiple power quality disturbances using EWT based adaptive filtering and multiclass SVM[J].Euro Computing,2019,334:265-274. doi:10.1016/j.neucom.2019.01.038
|
16 |
谢善益,肖斐,艾芊,等 .基于并行隐马尔科夫模型的电能质量扰动事件分类[J].电力系统保护与控制,2019,47(2):80-86. doi:10.7667/PSPC180062
|
|
XIE S Y, XIAO F, AI Q,et al .Parallel hidden Markov model based classification of power quality disturbance events[J].Power System Protection and Control,2019,47(2):80-86. doi:10.7667/PSPC180062
|
17 |
李晓娜,沈兴来,薛雪,等 .基于改进HHT和决策树的电能质量扰动辨识[J].电力建设,2017,38(2):114-121. doi:10.3969/j.issn.1000-7229.2017.02.016
|
|
LI X N, SHEN X L, XUE X,et al .Power quality disturbance identification based on improved HHT and decision tree[J].Electric Power Construction,2017,38(2):114-121. doi:10.3969/j.issn.1000-7229.2017.02.016
|
18 |
覃星福,龚仁喜 .基于广义S变换与PSO-PNN的电能质量扰动识别[J].电力系统保护与控制,2016,44(15):10-17. doi:10.7667/PSPC151524
|
|
QIN X F, GONG R X .Power quality disturbances classification based on generalized S-transform and PSO-PNN[J].Power System Protection and Control,2016,44(15):10-17. doi:10.7667/PSPC151524
|
19 |
徐志超,杨玲君,李晓明 .基于聚类改进S变换与直接支持向量机的电能质量扰动识别[J].电力自动化设备,2015,35(7):50-58.
|
|
XU Z C, YANG L J, LI X M .Power quality disturbance identification based on clustering-modified S-transform and direct support vector machine[J].Electric Power Automation Equipment,2015,35(7):50-58.
|
20 |
许立武,李开成,肖贤贵,等 .基于深度前馈网络的电能质量复合扰动识别[J].电测与仪表,2020,57(1):62-69. doi:10.19753/j.issn1001-1390.2020.001.008
|
|
XU L W, LI K C, XIAO X G,et al .Recognition of power quality complex disturbances based on deep feedforward network[J].Electrical Measurement & Instrumentation,2020,57(1):62-69. doi:10.19753/j.issn1001-1390.2020.001.008
|
21 |
马建,陈克绪,肖露欣,等 .基于受限玻尔兹曼机的电能质量复合扰动识别[J].南昌大学学报(理科版),2016,40(1):30-34. doi:10.3969/j.issn.1006-0464.2016.01.006
|
|
MA J, CHEN K X, XIAO L X,et al .Classification on mixed disturbances of power quality based on restricted Boltzmann machine[J].Journal of Nanchang University (Natural Science),2016,40(1):30-34. doi:10.3969/j.issn.1006-0464.2016.01.006
|