发电技术 ›› 2021, Vol. 42 ›› Issue (3): 313-321.DOI: 10.12096/j.2096-4528.pgt.20091
收稿日期:
2020-09-19
出版日期:
2021-06-30
发布日期:
2021-06-29
作者简介:
李亚光(1963), 男, 硕士, 高级工程师, 研究方向为检测、控制与智能诊断, yaguangli@yeah.net基金资助:
Received:
2020-09-19
Published:
2021-06-30
Online:
2021-06-29
Supported by:
摘要:
准确有效的状态监测是提高风电机组可靠性和安全性的关键。近年来,基于深度神经网络(deep neural network,DNN)的智能化异常检测方法越来越受到人们的重视。针对实际工业中难以获得准确的有标签数据的问题,提出了一种基于无监督学习的深度小世界神经网络(deep small-world neural network,DSWNN)来检测风电机组的早期故障。在深度置信网络(deep belief network,DBN)构建过程中,首先采用多个受限玻尔兹曼机(restricted Boltzmann machines,RBM)堆叠常规自动编码网络,并利用风机的无标签数据采集与监视控制(supervisory control and data acquisition,SCADA)数据进行预训练。然后,利用随机加边法将训练后的网络进行小世界特性转换,再利用最少的有标签数据对网络参数进行微调训练。此外,为了应付风速扰动并减少虚警,又提出了一种基于极值理论的自适应阈值作为异常判断准则。最后,通过2个风机异常检测的应用实例,并与DBN和DNN算法进行了对比,验证了该方法具有良好的有效性和准确性。
中图分类号:
李亚光, 李蒙. 基于深度小世界神经网络的风电机组异常检测[J]. 发电技术, 2021, 42(3): 313-321.
Yaguang LI, Meng LI. Anomaly Detection of Wind Turbines Based on Deep Small-World Neural Network[J]. Power Generation Technology, 2021, 42(3): 313-321.
序号 | 参数名称 | 符号 | 序号 | 参数名称 | 符号 | |
1 | 风速 | v0 | 7 | 变桨力矩3 | M3 | |
2 | 变桨角1 | θ1 | 8 | 变桨电机温度1 | T1 | |
3 | 变桨角2 | θ2 | 9 | 变桨电机温度2 | T2 | |
4 | 变桨角3 | θ3 | 10 | 变桨电机温度3 | T3 | |
5 | 变桨力矩1 | M1 | 11 | 发电机转速 | Ω | |
6 | 变桨力矩2 | M2 | 12 | 功率 | P |
表1 风机变桨系统监测参数
Tab. 1 Monitoring parameters of wind turbine pitch system
序号 | 参数名称 | 符号 | 序号 | 参数名称 | 符号 | |
1 | 风速 | v0 | 7 | 变桨力矩3 | M3 | |
2 | 变桨角1 | θ1 | 8 | 变桨电机温度1 | T1 | |
3 | 变桨角2 | θ2 | 9 | 变桨电机温度2 | T2 | |
4 | 变桨角3 | θ3 | 10 | 变桨电机温度3 | T3 | |
5 | 变桨力矩1 | M1 | 11 | 发电机转速 | Ω | |
6 | 变桨力矩2 | M2 | 12 | 功率 | P |
风机编号 | 风速/(m/s) | 异常信息 | 发生时间 | 恢复时间 |
FKD_F088 | 8.42 | 俯仰角1不同步 | 2017/01/01 07:58:12 | 2017/01/01 08:37:04 |
FKD_F088 | 5.05 | 变桨1驱动错误 | 2017/01/01 07:58:35 | 2017/01/01 08:37:04 |
FKD_F088 | 5.04 | 变桨2驱动错误 | 2017/01/01 07:58:35 | 2017/01/01 08:37:04 |
FKD_F088 | 6.76 | 存储继电器未复位 | 2017/01/01 08:00:04 | 2017/01/01 08:37:04 |
表2 风机变桨系统故障报警记录
Tab. 2 Fault alarm record of wind turbine pitch system
风机编号 | 风速/(m/s) | 异常信息 | 发生时间 | 恢复时间 |
FKD_F088 | 8.42 | 俯仰角1不同步 | 2017/01/01 07:58:12 | 2017/01/01 08:37:04 |
FKD_F088 | 5.05 | 变桨1驱动错误 | 2017/01/01 07:58:35 | 2017/01/01 08:37:04 |
FKD_F088 | 5.04 | 变桨2驱动错误 | 2017/01/01 07:58:35 | 2017/01/01 08:37:04 |
FKD_F088 | 6.76 | 存储继电器未复位 | 2017/01/01 08:00:04 | 2017/01/01 08:37:04 |
编号 | 故障名称 | 编号 | 故障名称 | |
F1 | 俯仰驱动错误 | F6 | 制动位置错误 | |
F2 | 驱动器错误 | F7 | 刹车时超速 | |
F3 | 存储继电器未重新设置 | F8 | 俯仰位置误差消除 | |
F4 | 偏航制动保险丝 | F9 | 俯仰位置不同步 | |
F5 | 电源中断 | F10 | 正常 |
表3 故障列表
Tab. 3 Fault list
编号 | 故障名称 | 编号 | 故障名称 | |
F1 | 俯仰驱动错误 | F6 | 制动位置错误 | |
F2 | 驱动器错误 | F7 | 刹车时超速 | |
F3 | 存储继电器未重新设置 | F8 | 俯仰位置误差消除 | |
F4 | 偏航制动保险丝 | F9 | 俯仰位置不同步 | |
F5 | 电源中断 | F10 | 正常 |
数据 | 故障类别 | 总数 | |||||||||
F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | ||
训练数据 | 233 | 238 | 224 | 84 | 74 | 245 | 232 | 229 | 238 | 18 203 | 20 000 |
验证数据 | 79 | 73 | 58 | 28 | 41 | 91 | 67 | 72 | 68 | 5 423 | 6 000 |
表4 实验数据的分配
Tab. 4 Confusion information of the experimental data
数据 | 故障类别 | 总数 | |||||||||
F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | ||
训练数据 | 233 | 238 | 224 | 84 | 74 | 245 | 232 | 229 | 238 | 18 203 | 20 000 |
验证数据 | 79 | 73 | 58 | 28 | 41 | 91 | 67 | 72 | 68 | 5 423 | 6 000 |
1 |
BOUFFARD F , GALIANA F D . Stochastic security for operations planning with significant wind power generation[J]. IEEE Transactions on Power Systems, 2008, 23, 306- 316.
DOI |
2 | 杨昌杏, 李录平. 风力机叶片损伤故障检测技术研究进展[J]. 发电技术, 2020, 41 (6): 599- 607. |
YANG C X , LI L P . Research progress on blade damage fault detection technology of wind turbine[J]. Power Generation Technology, 2020, 41 (6): 599- 607. | |
3 | 夏候凯顺, 李波. 基于深度置信网络的双馈风机变换器开路故障诊断[J]. 电力工程技术, 2021, 40 (1): 188- 194. |
XIAHOU K S , LI B . Open-switch fault diagnosis of converters of doubly-fed induction generator-based wind turbine using deep belief networks[J]. Electric Power Engineering Technology, 2021, 40 (1): 188- 194. | |
4 | 赵世伟, 胡雪梅, 李烨, 等. 轴流送风机叶片断裂事故分析及对策[J]. 浙江电力, 2019, 38 (5): 115- 118. |
ZHAO S E , HU X M , LI Y , et al. Analysis and countermeasure on blade fracture of axial flow forced draft fan[J]. Zhejiang Electric Power, 2019, 38 (5): 115- 118. | |
5 |
党建, 魏晋源, 贾嵘, 等. 基于Hilbert和CA-VMD的风电机组叶轮不平衡故障电信号特征提取方法[J]. 电网与清洁能源, 2021, 37 (1): 112- 118.
DOI |
DANG J , WEI J Y , JIA R , et al. Feature extraction method for unbalanced fault electrical signal of wind turbine impeller based on Hilbert and CA-VMD[J]. Power System and Clean Energy, 2021, 37 (1): 112- 118.
DOI |
|
6 | 海涛, 范恒, 王楷杰, 等. 基于PSO-SVM算法的风电机组结冰故障诊断[J]. 智慧电力, 2021, 49 (4): 1- 6. |
HAI T , FAN H , WANG K J , et al. Icing fault diagnosis of wind turbines based on PSO-SVM algorithm[J]. Smart Power, 2021, 49 (4): 1- 6. | |
7 |
YANG W , COURT R , JIANG J . Wind turbine condition monitoring by the approach of SCADA data analysis[J]. Renewable Energy, 2013, 53, 365- 376.
DOI |
8 |
SCHLECHTINGEN M , SANTOS I F . Wind turbine condition monitoring based on SCADA data using normal behavior models.Part 2:Application examples[J]. Applied Soft Computing, 2014, 14, 447- 460.
DOI |
9 |
ABRAMSON N , BRAVERMAN D J , SEBESTYEN G S . Pattern recognition and machine learning[J]. IEEE Transactions on Information Theory, 1963, 9, 257- 261.
DOI |
10 | MITCHELL T M . Machine learning[M]. New York: McGraw-Hill, 2003. |
11 |
LECUN Y , BENGIO Y , HINTON G . Deep learning[J]. Nature, 2015, 521, 436- 444.
DOI |
12 |
ZHAO R , YAN R Q , CHEN Z H , et al. Deep learning and its applications to machine health monitoring[J]. Mechanical Systems and Signal Processing, 2019, 115, 213- 237.
DOI |
13 | DENG L , YU D . Deep learning: methods and applications[J]. Foundations and Trends in Signal Processing, 2013, 7, 1811- 192. |
14 | JIANG G Q , HE H B , YAN J , et al. Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox[J]. IEEE Transactions on Industrial Electronics, 2019, 66, 3196- 3207. |
15 | YANG R , HUANG M G , LU Q D , et al. Rotating machinery fault diagnosis using long-short-term memory recurrent neural network[J]. IFAC-Papers On Line, 2018, 51, 228- 232. |
16 | YU W X , HUANG S D , XIAO W H . Fault diagnosis based on an approach combining a spectrogram and a convolutional neural network with application to a wind turbine system[J]. Energies, 2018, 11, 1- 11. |
17 | DU Y L , LI J Z , ZHANG Y , et al. Saliency detection based on deep cross CNN and non-interaction GrabCut[J]. Computer Engineering & Applications, 2017, 53, 32- 40. |
18 | SUTSKEVER I, HINTON G E, TAYLOR G W. The recurrent temporal restricted Boltzmann machine[C]//Proceedings of the Twenty-Second Annual Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada, December 8-11, 2008. |
19 | GEOFFREY H E . Deep belief networks[J]. Scholarpedia, 2009, 4, 1- 4. |
20 | VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//International Conference on Machine Learning. Helsinki, Finland, June 5-9, 2008. |
21 | VINCENT P , LAROCHELLE H , LAJOIE I , et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11, 3371- 3408. |
22 |
QIN Y , WANG X , ZOU J Q . The optimized deep belief networks with improved logistic sigmoid units and their application in fault diagnosis for planetary gearboxes of wind turbines[J]. IEEE Transactions on Industrial Electronics, 2019, 66, 3814- 3824.
DOI |
23 |
QIN F W , BAI J , YUAN W Q . Research on intelligent fault diagnosis of mechanical equipment based on sparse deep neural networks[J]. Journal of Vibroengineering, 2017, 19, 2439- 2455.
DOI |
24 |
ZHAO H S , LIU H H , HU W J , et al. Anomaly detection and fault analysis of wind turbine components based on deep learning network[J]. Renewable Energy, 2018, 127, 825- 834.
DOI |
25 |
WANG S X , LI M , ZHAO L , et al. Short-term wind power prediction based on improved small-world neural network[J]. Neural Computing and Applications, 2019, 29, 3173- 3185.
DOI |
26 | LI M , WANG S X . Dynamic fault monitoring of pitch system in wind turbines using selective ensemble small-world neural networks[J]. Energies, 2019, 12, 1- 20. |
27 |
WATTS D J , STROGATZ S H . Collective dynamics of small world networks[J]. Nature, 1998, 393, 440- 442.
DOI |
28 |
KIM S Y , LIM W . Stochastic spike synchronization in a small-world neural network with spike-timing-dependent plasticity[J]. Neural Networks, 2018, 97, 92- 106.
DOI |
29 |
HUMPERT B K . Improving back propagation with a new error function[J]. Neural Networks, 1994, 7, 1191- 1192.
DOI |
[1] | 樊昂, 李录平, 刘瑞, 欧阳敏南, 陈尚年. 不同风速对单桩式海上风电机组塔筒动态特性的影响[J]. 发电技术, 2024, 45(2): 312-322. |
[2] | 孙财新, 张波, 唐巍, 周昳鸣, 付明志, 秦猛, 郭小江. 海上风电机组国产化研究与实践[J]. 发电技术, 2023, 44(5): 696-702. |
[3] | 张航, 周传杰, 张林, 陈节涛, 徐春梅, 彭道刚. 基于概率神经网络-小波神经网络-DS信息融合的电厂引风机故障诊断[J]. 发电技术, 2022, 43(6): 951-958. |
[4] | 白明亮, 张冬雪, 刘金福, 刘娇, 于达仁. 基于深度自编码器和支持向量数据描述的燃气轮机高温部件异常检测[J]. 发电技术, 2021, 42(4): 422-430. |
[5] | 陈尚年, 李录平, 张世海, 欧阳敏南, 樊昂, 文贤馗. 汽轮发电机组振动故障诊断技术研究进展[J]. 发电技术, 2021, 42(4): 489-499. |
[6] | 赵海川, 芦彦东, 郑浩康, 邢作霞. 低压微网中小型直驱永磁风电机组低电压穿越技术研究[J]. 发电技术, 2020, 41(6): 659-666. |
[7] | 杨昌杏, 李录平. 风力机叶片损伤故障检测技术研究进展[J]. 发电技术, 2020, 41(6): 599-607. |
[8] | 于永军,王利超,张明远,肖仕武,张馨元. 基于阻抗特性多项式拟合的直驱风电机组次同步振荡稳定判据[J]. 发电技术, 2020, 41(4): 429-436. |
[9] | 危威. 大型火电厂风机质量不平衡故障分析及处理[J]. 发电技术, 2020, 41(2): 198-201. |
[10] | 范丽霞,蔡瑞强,张欢畅,魏远,田恬,胡斌. 电压型虚拟同步发电机控制策略下的双馈风电机组阻抗及次同步振荡特性[J]. 发电技术, 2019, 40(5): 434-439. |
[11] | 柴海棣,赵晓艳,史波. 基于能量传递模型的永磁直驱变桨变速风电机组功率特性测试方法[J]. 发电技术, 2019, 40(4): 396-402. |
[12] | 刘永前,赖福兴,阎洁,陈子新,李莉,韩爽,王永. 考虑不同截面翼型选取的风电机组叶片优化设计方法[J]. 发电技术, 2019, 40(4): 382-388. |
[13] | 罗云,陈雪林,李瑞东,苏永健,徐义巍,晁俊凯,李鹏竹,任海彬. 汽轮机变工况下调节级压力预测模型及应用[J]. 发电技术, 2019, 40(2): 161-167. |
[14] | 袁国刚,饶柱石. 基于振动分析法的变压器非电量状态监测与诊断研究[J]. 发电技术, 2019, 40(2): 134-140. |
[15] | 张中泉,刘晓光,钟天宇. 风电机组有功功率集散优化控制系统研究[J]. 发电技术, 2018, 39(6): 574-579. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||