发电技术 ›› 2026, Vol. 47 ›› Issue (1): 122-132.DOI: 10.12096/j.2096-4528.pgt.260111

• 储能 • 上一篇    

基于标准热阻法的压缩空气储能系统整体建模及能-㶲分析

胡泽灵1, 郝俊红1, 巨陈治1, 马腾宇1, 窦真兰2, 李双江3   

  1. 1.华北电力大学能源动力与机械工程学院,北京市 昌平区 102206
    2.国网上海市电力公司,上海市 浦东新区 200122
    3.中国电建集团河北省电力勘测设计研究院有限公司,河北省 石家庄市  050000
  • 收稿日期:2025-02-07 修回日期:2025-03-25 出版日期:2026-02-28 发布日期:2026-02-12
  • 通讯作者: 郝俊红
  • 作者简介:胡泽灵(1999),男,硕士研究生,研究方向为压缩空气储能,h17855538865@163.com
    郝俊红(1988),男,博士,副教授,研究方向为储能与燃料电池、分布式能源系统,本文通信作者,hjh@ncepu.edu.cn
    巨陈治(2001),女,硕士,研究方向为分布式能源系统的能力状态估计,jcz@ncepu.edu.cn
    马腾宇(1999),男,硕士,研究方向为质子交换膜燃料电池,tyma1999@163.com
    窦真兰(1980),女,博士,高级工程师,研究方向为综合能源系统、能源互联网、风力发电、氢能、储能和微电网等,douzhl@126.com
    李双江(1982),男,正高级工程师,研究方向为压缩空气储能,li020532@163.com
  • 基金资助:
    国家自然科学基金项目(52176068)

Comprehensive Modeling and Energy-Exergy Analysis of Compressed Air Energy Storage Systems Based on Standard Thermal Resistance Method

Zeling HU1, Junhong HAO1, Chenzhi JU1, Tengyu MA1, Zhenlan DOU2, Shuangjiang LI3   

  1. 1.School of Energy, Power and Mechanical Engineering, North China Electric Power University, Changping District, Beijing 102206, China
    2.State Grid Shanghai Electric Power Company, Pudong New Area, Shanghai 200122, China
    3.Power China Hebei Electric Power Engineering Co. , Ltd. , Shijiazhuang 050000, Hebei Province, China
  • Received:2025-02-07 Revised:2025-03-25 Published:2026-02-28 Online:2026-02-12
  • Contact: Junhong HAO
  • Supported by:
    National Natural Science Foundation of China(52176068)

摘要:

目的 为了有效提升压缩空气储能(compressed air energy storage,CAES)系统的储能特性和系统效率,对各部件的性能及其耦合特性进行了建模分析。 方法 针对CAES系统,应用标准热阻方法考虑换热部件的传递特性,结合储气装置与做功部件模型,构建传热、储气、做功耦合的完整热力学模型及能量、㶲分析模型,评价了压缩和膨胀过程中储(释)能质量流量比对系统性能的影响。揭示储气库最高储气压力与体积之间的关系对系统储能效率及储能密度的影响规律。 结果 随着储(释)能质量流量比的增加,压缩机的总能耗先降低后升高,膨胀机的输出功是先上升后降低,当储(释)能的质量比分别为1.2和1.3时,系统效率达到最高,为53.65%;另外,系统中首级压缩和膨胀机的㶲损最大,油-气换热器和压缩机的㶲损占系统总㶲损的69%。 结论 所建模型和研究结果对CAES运行策略具有一定的指导意义。

关键词: 压缩空气储能, 换热器, 热阻, 㶲损, 质量流量, 系统效率, 储气装置

Abstract:

Objectives In order to effectively improve the energy storage characteristics and system efficiency of compressed air energy storage (CAES) systems, the performance of each component and their coupling characteristics are modeled and analyzed. Methods In this study, for CAES systems, the standard thermal resistance method is applied to take into account the transfer characteristics of the heat exchange components. Combined with the gas storage device and the work component model, this study establishes a comprehensive thermodynamic model integrating heat transfer, gas storage, and work coupling, along with an energy and exergy analysis model. The influence of the mass flow rate of energy storage and release on the system performance during compression and expansion is evaluated. The pattern of influence of the relationship between the maximum gas storage pressure and volume of the gas storage reservoir on the system energy storage efficiency and energy storage density is revealed. Results With the increase of the mass flow rate of energy storage and release, the total energy consumption of the compressor first decreases and then increases, and the output work of the expander first increases and then decreases. When the mass rates of energy storage and release are 1.2 and 1.3, respectively, the system efficiency reaches the maximum value of 53.65%. In addition, the exergy loss of the first-stage compression and expander in the system is the largest, and the exergy loss of the oil-gas heat exchanger and the compressor accounts for 69% of the total exergy loss of the system. Conclusions The established model and the research findings provide important guidance for CAES operational strategy.

Key words: compressed air energy storage, heat exchanger, thermal resistance, exergy loss, mass flow, system efficiency, gas storage device

中图分类号: