发电技术 ›› 2025, Vol. 46 ›› Issue (4): 829-838.DOI: 10.12096/j.2096-4528.pgt.24220
郭前鑫1, 李建波2, 王虎1, 梁银堂2, 韩新建1, 阮雄伟2, 卢啸风2
收稿日期:
2024-10-16
修回日期:
2025-01-03
出版日期:
2025-08-31
发布日期:
2025-08-21
通讯作者:
李建波
作者简介:
基金资助:
Qianxin GUO1, Jianbo LI2, Hu WANG1, Yintang LIANG2, Xinjian HAN1, Xiongwei RUAN2, Xiaofeng LU2
Received:
2024-10-16
Revised:
2025-01-03
Published:
2025-08-31
Online:
2025-08-21
Contact:
Jianbo LI
Supported by:
摘要:
目的 电站锅炉在燃用准东煤时会出现严重的受热面沾污结渣问题,为此,对准东煤灰在受热面上的沉积和脱落特性进行了研究。 方法 建立了基于颗粒黏附能的沉积灰侵蚀模型,对准东煤灰在单管上的动态沉积和脱落过程进行了数值模拟研究。 结果 耦合侵蚀机理的模型模拟结果与实验结果之间的误差仅为3.3%,展现出较高的精确度。此外,沉积灰的脱落速率呈先增大后趋于平缓的趋势,但在所模拟的时间范围内仅能使25%的沉积灰脱落。与此同时,沉积灰的累积使受热面的传热损耗速率逐渐增大,6 h时间段内的平均传热损耗速率为1 h时间段的1.76倍。另外,6 h沉积灰的黏附能为1 h的6.11倍,相应的吹灰出口空气质量流率需要提高1.85倍才能有望清除全部的积灰。 结论 研究结果加深了对准东煤灰动态沉积和脱落过程的认识,为工业上的吹灰优化提供了重要研究数据和理论支撑。
中图分类号:
郭前鑫, 李建波, 王虎, 梁银堂, 韩新建, 阮雄伟, 卢啸风. 准东煤灰的动态沉积与脱落特性数值模拟研究[J]. 发电技术, 2025, 46(4): 829-838.
Qianxin GUO, Jianbo LI, Hu WANG, Yintang LIANG, Xinjian HAN, Xiongwei RUAN, Xiaofeng LU. Study on Numerical Simulation of Dynamic Deposition and Shedding Characteristics of Zhundong Coal Ash[J]. Power Generation Technology, 2025, 46(4): 829-838.
化学成分分析(干燥基) | 工业分析 | 元素分析 | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
w(SiO2) | w(Al2O3) | w(Fe2O3) | w(CaO) | w(MgO) | w(TiO2) | w(SO3) | w(P2O5) | w(K2O) | w(Na2O) | w(C) | w(H) | w(O) | w(N) | w(S) | ||||||
11.71 | 6.69 | 5.93 | 32.51 | 7.56 | 0.39 | 27.93 | 0.09 | 0.44 | 4.9 | 15.6 | 30.07 | 64.84 | 5.09 | 75.45 | 3.51 | 14.69 | 0.69 | 0.57 |
表1 准东煤的工业分析、元素分析以及煤灰化学成分 (%)
Tab. 1 Proximate analysis and ultimate analysis of Zhundong coal and its ash chemical composition
化学成分分析(干燥基) | 工业分析 | 元素分析 | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
w(SiO2) | w(Al2O3) | w(Fe2O3) | w(CaO) | w(MgO) | w(TiO2) | w(SO3) | w(P2O5) | w(K2O) | w(Na2O) | w(C) | w(H) | w(O) | w(N) | w(S) | ||||||
11.71 | 6.69 | 5.93 | 32.51 | 7.56 | 0.39 | 27.93 | 0.09 | 0.44 | 4.9 | 15.6 | 30.07 | 64.84 | 5.09 | 75.45 | 3.51 | 14.69 | 0.69 | 0.57 |
参数 | 数值 | 来源 |
---|---|---|
烟气温度/K | 1 073 | 实验 |
探针温度/K | 823 | 实验 |
入口速度/(m/s) | 15 | 实验 |
飞灰质量流量/(kg/s) | 0.000 24 | 实验 |
飞灰密度/(kg/m3) | 2 500 | 文献[ |
沉积灰层孔隙率 | 0.5 | 文献[ |
飞灰导热率/[W/(m⋅K)] | 1.89 | 文献[ |
表2 模拟输入的条件
Tab. 2 Simulation input conditions
参数 | 数值 | 来源 |
---|---|---|
烟气温度/K | 1 073 | 实验 |
探针温度/K | 823 | 实验 |
入口速度/(m/s) | 15 | 实验 |
飞灰质量流量/(kg/s) | 0.000 24 | 实验 |
飞灰密度/(kg/m3) | 2 500 | 文献[ |
沉积灰层孔隙率 | 0.5 | 文献[ |
飞灰导热率/[W/(m⋅K)] | 1.89 | 文献[ |
灰沉积时间/h | 传热损耗/kJ | 平均传热损耗速率/(kJ/h) |
---|---|---|
1 | 7 145.41 | 7 145.41 |
2 | 17 236.44 | 8 618.22 |
3 | 29 597.16 | 9 865.72 |
4 | 43 663.31 | 10 915.83 |
5 | 59 052.21 | 11 810.44 |
6 | 75 547.71 | 12 591.28 |
表3 传热损耗率随时间的变化关系
Tab. 3 Variation of heat transfer loss rate over time
灰沉积时间/h | 传热损耗/kJ | 平均传热损耗速率/(kJ/h) |
---|---|---|
1 | 7 145.41 | 7 145.41 |
2 | 17 236.44 | 8 618.22 |
3 | 29 597.16 | 9 865.72 |
4 | 43 663.31 | 10 915.83 |
5 | 59 052.21 | 11 810.44 |
6 | 75 547.71 | 12 591.28 |
灰沉积时间/h | 换热管道沉积灰黏附能/J | 吹灰装置出口质量流率/(kg/s) |
---|---|---|
1 | 302.39 | 0.003 9 |
2 | 597.01 | 0.004 9 |
3 | 884.62 | 0.005 6 |
4 | 1 201.73 | 0.006 2 |
5 | 1 525.69 | 0.006 7 |
6 | 1 847.79 | 0.007 2 |
表4 沉积灰的平均黏附能和所需的吹灰质量流率
Tab. 4 Average adhesion energy of deposited ash and required mass flow rate for soot blowing
灰沉积时间/h | 换热管道沉积灰黏附能/J | 吹灰装置出口质量流率/(kg/s) |
---|---|---|
1 | 302.39 | 0.003 9 |
2 | 597.01 | 0.004 9 |
3 | 884.62 | 0.005 6 |
4 | 1 201.73 | 0.006 2 |
5 | 1 525.69 | 0.006 7 |
6 | 1 847.79 | 0.007 2 |
[1] | 牟春华,居文平,王洋,等 .“双碳”目标下清洁高效灵活煤电技术现状及煤电前景展望[J].热力发电,2023,52(9):1-10. |
MU C H, JU W P, WANG Y,et al .Techniques status and perspective of efficient-flexible coal fired power generation under carbon peak and neutrality targets[J].Thermal Power Generation,2023,52(9):1-10. | |
[2] | 张全斌,周琼芳 .基于“双碳”目标的中国火力发电技术发展路径研究[J].发电技术,2023,44(2):143-154. doi:10.12096/j.2096-4528.pgt.22092 |
ZHANG Q B, ZHOU Q F .Research on the development path of China’s thermal power generation technology based on the goal of “carbon peak and carbon neutralization”[J].Power Generation Technology,2023,44(2):143-154. doi:10.12096/j.2096-4528.pgt.22092 | |
[3] | 贠晓可,张天任,黄玉萍,等 .广东电力低碳高质量发展下的电煤需求影响分析[J].广东电力,2023,36(11):1-10. |
YUN X K, ZHANG T R, HUANG Y P,et al .Influence analysis of thermal coal demand under the low-carbon and high-quality development of electric power in Guangdong Province[J].Guangdong Electric Power,2023,36(11):1-10. | |
[4] | 程文煜,张健,熊卓,等 .“双碳” 目标下煤电机组节能改造技术发展与实践[J].电力科技与环保,2024,40(5):455-464. |
CHENG W Y, ZHANG J, XIONG Z,et al .Development and practice of energy-saving retrofit technologies for coal power units under carbon peaking and carbon neutrality goals[J].Electric Power Technology and Environmental Protection,2024,40(5):455-464. | |
[5] | 李昌陵,常喜强,卢浩 .新疆能耗双控向碳排放双控转变分析和预测[J].发电技术,2024,45(6):1114-1120. |
LI C L, CHANG X Q, LU H .Analysis and forecast of the shift from double control of energy consumption to double control of carbon emissions in Xinjiang[J].Power Generation Technology,2024,45(6):1114-1120. | |
[6] | 卢啸风,李建波,刘卓,等 .燃准东煤电站锅炉沾污结渣特性及防治措施研究进展[J].中国电机工程学报,2024,44(18):7247-7264. |
LU X F, LI J B, LIU Z,et al .Research progress on the characteristics and countermeasures of ash slagging and fouling in boilers burning Zhundong coal[J].Proceedings of the CSEE,2024,44(18):7247-7264. | |
[7] | ZHU C, QU S J, ZHANG J,et al .Distribution,occurrence and leaching dynamic behavior of sodium in Zhundong coal[J].Fuel,2017,190:189-197. doi:10.1016/j.fuel.2016.11.031 |
[8] | 吕俊复,史航,吴玉新,等 .燃用准东煤过程中碱/碱土金属迁移规律及锅炉结渣沾污研究进展[J].煤炭学报,2020,45(1):377-385. |
LÜ J F, SHI H, WU Y X,et al .Transformation of AAEM and ash deposition characteristics during combustion of Zhundong coal[J].Journal of China Coal Society,2020,45(1):377-385. | |
[9] | LONG X F, LI J B, WANG H J,et al .The morphological and mineralogical characteristics and thermal conductivity of ash deposits in a 220 MW CFBB firing Zhundong lignite[J].Energy,2023,263:125842. doi:10.1016/j.energy.2022.125842 |
[10] | MCELROY M W, CARR R C, ENSOR D S,et al .Size distribution of fine particles from coal combustion[J].Science,1982,215(4528):13-19. doi:10.1126/science.215.4528.13 |
[11] | 龙潇飞,李建波,郭子鹏,等 .添加石灰石对准东煤CFB燃烧过程床料团聚和受热面积灰的影响[J].中国电机工程学报,2024,44(14):5631-5642. |
LONG X F, LI J B, GUO Z P,et al .Effect of limestone addition on bed particle agglomeration and ash deposition on heat transfer surface during Zhundong coal combustion in a circulating fluidized bed[J].Proceedings of the CSEE,2024,44(14):5631-5642. | |
[12] | 魏砾宏,崔保崇,陈勇,等 .高碱煤钠赋存形态及其燃烧过程中迁移转化的研究进展[J].燃料化学学报,2019,47(8):897-906. |
WEI L H, CUI B C, CHEN Y,et al .Occurrence of sodium in high alkali coal and its transformation during combustion[J].Journal of Fuel Chemistry and Technology,2019,47(8):897-906. | |
[13] | WANG Z H, LIU Y Z, WHIDDON R,et al .Measurement of atomic sodium release during pyrolysis and combustion of sodium-enriched Zhundong coal pellet[J].Combustion and Flame,2017,176:429-438. doi:10.1016/j.combustflame.2016.10.020 |
[14] | KLEINHANS U, WIELAND C, FRANDSEN F J,et al .Ash formation and deposition in coal and biomass fired combustion systems:progress and challenges in the field of ash particle sticking and rebound behavior[J].Progress in Energy and Combustion Science,2018,68:65-168. doi:10.1016/j.pecs.2018.02.001 |
[15] | ZBOGAR A, FRANDSEN F, JENSEN P A,et al .Shedding of ash deposits[J].Progress in Energy and Combustion Science,2009,35(1):31-56. doi:10.1016/j.pecs.2008.07.001 |
[16] | LI G D, LI S Q, HUANG Q,et al .Fine particulate formation and ash deposition during pulverized coal combustion of high-sodium lignite in a down-fired furnace[J].Fuel,2015,143:430-437. doi:10.1016/j.fuel.2014.11.067 |
[17] | ZHOU H, ZHOU B, LI L T,et al .Experimental measurement of the effective thermal conductivity of ash deposit for high sodium coal (Zhun Dong coal) in a 300 KW test furnace[J].Energy & Fuels,2013,27(11):7008-7022. doi:10.1021/ef4012017 |
[18] | 滕晓龙,胡丽娜,张文超,等 .准东煤飞灰沉积特性及数值模拟研究[J].燃烧科学与技术,2024,30(4):419-428. |
TENG X L, HU L N, ZHANG W C,et al .Sedimentation characteristics and numerical simulation of Zhundong coal fly ash[J].Journal of Combustion Science and Technology,2024,30(4):419-428. | |
[19] | BRINK A, LINDBERG D, HUPA M,et al .A temperature-history based model for the sticking probability of impacting pulverized coal ash particles[J].Fuel Processing Technology,2016,141:210-215. doi:10.1016/j.fuproc.2015.08.039 |
[20] | KÆR S K, ROSENDAHL L A, BAXTER L L .Towards a CFD-based mechanistic deposit formation model for straw-fired boilers[J].Fuel,2006,85(5/6):833-848. doi:10.1016/j.fuel.2005.08.016 |
[21] | WANG F L, HE Y L, TONG Z X,et al .Real-time fouling characteristics of a typical heat exchanger used in the waste heat recovery systems[J].International Journal of Heat and Mass Transfer,2017,104:774-786. doi:10.1016/j.ijheatmasstransfer.2016.08.112 |
[22] | GARBA M U, INGHAM D B, MA L,et al .Prediction of potassium chloride sulfation and its effect on deposition in biomass-fired boilers[J].Energy & Fuels,2012,26(11):6501-6508. doi:10.1021/ef201681t |
[23] | LIANG Y, LI J, LONG X,et al.A numerical simulation study of ash deposition in a circulating fluidized bed during Zhundong lignite combustion[J].Fuel,2023,333:126501. doi:10.1016/j.fuel.2022.126501 |
[24] | GUO Z P, LI J B, LIANG Y T,et al .A numerical simulation study into the effect of longitudinal and transverse pitch on deposition of Zhundong coal ash on tube bundles[J].Processes,2024,12(1):178. doi:10.3390/pr12010178 |
[25] | BOURIS D, KONSTANTINIDIS E, BALABANI S,et al .Design of a novel,intensified heat exchanger for reduced fouling rates[J].International Journal of Heat and Mass Transfer,2005,48(18):3817-3832. doi:10.1016/j.ijheatmasstransfer.2005.03.026 |
[26] | ZHOU H, HU S H .Numerical simulation of ash deposition behavior with a novel erosion model using dynamic mesh[J].Fuel,2021,286:119482. doi:10.1016/j.fuel.2020.119482 |
[27] | LIU Z, LI J B, WANG Q H,et al .An experimental investigation into mineral transformation,particle agglomeration and ash deposition during combustion of Zhundong lignite in a laboratory-scale circulating fluidized bed[J].Fuel,2019,243:458-468. doi:10.1016/j.fuel.2019.01.134 |
[28] | ZHENG Z M, YANG W M, CAI Y T,et al .Dynamic simulation on ash deposition and heat transfer behavior on a staggered tube bundle under high-temperature conditions[J].Energy,2020,190:116390. doi:10.1016/j.energy.2019.116390 |
[29] | BALAKRISHNAN S, NAGARAJAN R, KARTHICK K .Mechanistic modeling,numerical simulation and validation of slag-layer growth in a coal-fired boiler[J].Energy,2015,81:462-470. doi:10.1016/j.energy.2014.12.058 |
[30] | MU L, MIAO H C, ZHAO C,et al .Dynamic CFD modeling evaluation of ash deposition behavior and morphology evolution with different tube arrangements[J].Powder Technology,2021,379:279-295. doi:10.1016/j.powtec.2020.10.057 |
[31] | WALSH P M, SAYRE A N, LOEHDEN D O,et al .Deposition of bituminous coal ash on an isolated heat exchanger tube:effects of coal properties on deposit growth[J].Progress in Energy and Combustion Science,1990,16(4):327-345. doi:10.1016/0360-1285(90)90042-2 |
[32] | HSIAO W K, CHUN J H, SAKA N .The effects of wetting and surface roughness on liquid metal droplet bouncing[J].Journal of Manufacturing Science and Engineering,2009,131(2):021010. doi:10.1115/1.3090884 |
[33] | JOHNSON K, KENDALL K, ROBERTS A D .Surface energy and the contact of elastic solids[J].Proceedings of the Royal Society of London.A.Mathematical and Physical Sciences,2007,324:301-313. |
[34] | SINGH S, TAFTI D .Particle deposition model for particulate flows at high temperatures in gas turbine components[J].International Journal of Heat and Fluid Flow,2015,52:72-83. doi:10.1016/j.ijheatfluidflow.2014.11.008 |
[35] | MAO T, KUHN D C S, TRAN H .Spread and rebound of liquid droplets upon impact on flat surfaces[J].AIChE Journal,1997,43(9):2169-2179. doi:10.1002/aic.690430903 |
[36] | NI J J, YU G S, GUO Q H,et al .Submodel for predicting slag deposition formation in slagging gasification systems[J].Energy & Fuels,2011,25(3):1004-1009. doi:10.1021/ef101696a |
[37] | LIU C, LIU Z H, ZHANG T,et al .Numerical investigation on development of initial ash deposition layer for a high-alkali coal[J].Energy & Fuels,2017,31(3):2596-2606. doi:10.1021/acs.energyfuels.6b03043 |
[38] | 严新荣,胡志勇,张鹏威,等 .煤电机组运行灵活性提升技术研究与应用[J].发电技术,2024,45(6):1074-1086. |
YAN X R, HU Z Y, ZHANG P W,et al .Research and application of operation flexibility improvement technology for coal-fired power unit[J].Power Generation Technology,2024,45(6):1074-1086. | |
[39] | 谭琦,孙宗康,洪立,等 .一种T型吹灰装置在锅炉空气预热器上的应用[J].广东电力,2023,36(4):110-117. |
TAN Q, SUN Z K, HONG L,et al .Application of a T-type soot blowing device on bolier air preheater[J].Guangdong Electric Power,2023,36(4):110-117. | |
[40] | 王志敏,黄骞,柳冠青,等 .适应新型电力系统的调峰火电机组空气预热器安全评估策略[J].南方能源建设,2024,11(6):33-40. |
WANG Z M, HUANG Q, LIU G Q,et al .Flexibility-oriented safety assessment strategy for air preheater in thermal power units adapting to the advanced power system[J].Southern Energy Construction,2024,11(6):33-40. | |
[41] | LI J B, DU W J, CHENG L .Numerical simulation and experiment of gas-solid two phase flow and ash deposition on a novel heat transfer surface[J].Applied Thermal Engineering,2017,113:1033-1046. doi:10.1016/j.applthermaleng.2016.10.198 |
[42] | WACŁAWIAK K, KALISZ S .A practical numerical approach for prediction of particulate fouling in PC boilers[J].Fuel,2012,97:38-48. doi:10.1016/j.fuel.2012.02.007 |
[1] | 张立栋, 杨智翔, 李文锋, 冯江哲, 张博, 任淮辉, 陈哲, 王兆新. 导流板对水平轴风力机气动特性影响的数值模拟研究[J]. 发电技术, 2025, 46(2): 336-343. |
[2] | 张立峰, 董祥虎. 基于鲁棒正则化极限学习机的声学层析温度分布重建[J]. 发电技术, 2025, 46(2): 361-369. |
[3] | 乔世超, 陈衡, 李博, 潘佩媛, 徐钢. 基于K-Means聚类与Ridge回归算法的煤炭发热量预测研究[J]. 发电技术, 2025, 46(1): 135-144. |
[4] | 李凯, 章平衡, 孟志浩, 曹允宁, 徐尧, 刘莉, 李廉明. SCR外置烟道飞灰沉积特性与流场优化数值仿真[J]. 发电技术, 2025, 46(1): 145-153. |
[5] | 王凯卉, 刘斌, 折晓会, 刘伟, 范昊, 康宗耀, 徐礼. 氨氢混合燃烧在旋流燃烧器中的动力学特性与NO x 减排机理研究[J]. 发电技术, 2025, 46(1): 171-179. |
[6] | 曾宪民, 李柏云, 沈向阳, 陈嘉澍, 丁力行. 半周受热下太阳能吸热器横纹管的热应力分析[J]. 发电技术, 2025, 46(1): 190-199. |
[7] | 严新荣, 胡志勇, 张鹏威, 郑成航, 向军, 唐郭安, 刘金亮, 郭剑雄, 黄一博, 于鹏峰, 高翔. 煤电机组运行灵活性提升技术研究与应用[J]. 发电技术, 2024, 45(6): 1074-1086. |
[8] | 刘卓, 陈冬林, 汪淑奇, 杨仪江, 闫优洋, 杨展. 减缓脱硫塔除雾器堵塞的流场优化方法[J]. 发电技术, 2024, 45(6): 1087-1094. |
[9] | 袁鑫, 刘骏, 陈衡, 潘佩媛, 徐钢, 王修彦. 碳捕集技术应用对燃煤机组调峰能力的影响[J]. 发电技术, 2024, 45(3): 373-381. |
[10] | 屠楠, 刘家琛, 徐静, 方嘉宾, 马彦花. 管壳式相变蓄热器的蓄释热过程性能分析[J]. 发电技术, 2024, 45(3): 508-516. |
[11] | 张宏伟, 张永生, 汪涛, 王家伟. 电厂燃煤飞灰固化脱硫污泥重金属铅特性研究[J]. 发电技术, 2024, 45(3): 527-534. |
[12] | 刘学, 李国栋, 张瑞颖, 侯一晨, 陈磊, 杨立军. 电站空冷岛轴流风机模型研究[J]. 发电技术, 2024, 45(3): 545-557. |
[13] | 龚思琦, 云再鹏, 许明, 敖乐, 李初福, 黄凯, 孙晨. 基于三元催化剂的固体氧化物燃料电池尾气催化燃烧数值模拟[J]. 发电技术, 2024, 45(2): 331-340. |
[14] | 刘玉成, 杨源, 胡宇浩, 李雨航, 赵子泰, 马志勇, 董玉亮. 基于事件树连锁故障推演和证据推理的制氢站设备风险评价[J]. 发电技术, 2024, 45(1): 42-50. |
[15] | 郭滔, 于海洋, 冯海波, 袁汉川, 田兵, 杨玉杰, 赵元宾, 赵倩. 气侧均流装置对冷却三角单元流动传热特性影响的实验研究[J]. 发电技术, 2024, 45(1): 79-89. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||