发电技术 ›› 2025, Vol. 46 ›› Issue (2): 304-313.DOI: 10.12096/j.2096-4528.pgt.23157
• 碳中和 • 上一篇
黄忠源1, 金绪良1, 孟凡钦1, 殷爱鸣1, 张丽1, 陈绍云2
收稿日期:
2024-03-02
修回日期:
2024-07-01
出版日期:
2025-04-30
发布日期:
2025-04-23
作者简介:
基金资助:
Zhongyuan HUANG1, Xuliang JIN1, Fanqin MENG1, Aiming YIN1, Li ZHANG1, Shaoyun CHEN2
Received:
2024-03-02
Revised:
2024-07-01
Published:
2025-04-30
Online:
2025-04-23
Supported by:
摘要:
目的 燃烧后化学吸收CO2捕集技术因运行能耗和总成本较高,其在燃气电厂规模化脱碳工程应用仍较少。为降低其能耗,特别是再生能耗,有必要进行试验研究以提高化学吸收剂的性能。 方法 通过组成设计、实验室小型试验装置测试研究和工程测试验证,开发了2种新型多元胺吸收剂。 结果 与乙醇胺(MEA)相比,19%二乙氨基乙醇+9%哌嗪+2%乙醇胺(DT01-5)和20% 1, 4-丁二胺+5%甲基二乙醇胺+5% 2-氨基-2甲基-1-丙醇(DT02-3)这2种多元胺的吸收负荷、吸收速率、解吸速率、循环容量性能明显提升,理化性质接近工业装置常用的30% MEA。通过2 m3/h小型试验装置测试,2种吸收剂的能耗与MEA相比分别降低了15.84%和9.32%。3 000 m3/h工业测试结果表明:与MEA相比,2种吸收剂的再生热耗分别降低了32.89%和39.52%,捕集电耗分别降低了9.83%和16.14%,其他性能指标均有不同程度的提升,运行总成本分别下降了25.95%、34.14%。 结论 所开发的2种新型多元胺吸收剂均有较好商业应用潜力。
中图分类号:
黄忠源, 金绪良, 孟凡钦, 殷爱鸣, 张丽, 陈绍云. 天然气电厂新型多元胺基CO2吸收剂试验与应用研究[J]. 发电技术, 2025, 46(2): 304-313.
Zhongyuan HUANG, Xuliang JIN, Fanqin MENG, Aiming YIN, Li ZHANG, Shaoyun CHEN. Experimental and Application Research of Novel Polyamine-Based CO2 Absorbents in Gas-Fired Power Plants[J]. Power Generation Technology, 2025, 46(2): 304-313.
成分配比 | 命名 |
---|---|
27% DEEA+1% PZ+2% MEA | DT01-1 |
25% DEEA+3% PZ+2% MEA | DT01-2 |
23% DEEA+5% PZ+2% MEA | DT01-3 |
21% DEEA+7% PZ+2% MEA | DT01-4 |
19% DEEA+9% PZ+2% MEA | DT01-5 |
24% BDA+1% MDEA+5% AMP | DT02-1 |
22% BDA+3% MDEA+5% AMP | DT02-2 |
20% BDA+5% MDEA+5% AMP | DT02-3 |
18% BDA+7% MDEA+5% AMP | DT02-4 |
16% BDA+9% MDEA+5% AMP | DT02-5 |
表1 不同混合胺吸收剂的成分配比
Tab. 1 Composition ratios of different mixed amine absorbents
成分配比 | 命名 |
---|---|
27% DEEA+1% PZ+2% MEA | DT01-1 |
25% DEEA+3% PZ+2% MEA | DT01-2 |
23% DEEA+5% PZ+2% MEA | DT01-3 |
21% DEEA+7% PZ+2% MEA | DT01-4 |
19% DEEA+9% PZ+2% MEA | DT01-5 |
24% BDA+1% MDEA+5% AMP | DT02-1 |
22% BDA+3% MDEA+5% AMP | DT02-2 |
20% BDA+5% MDEA+5% AMP | DT02-3 |
18% BDA+7% MDEA+5% AMP | DT02-4 |
16% BDA+9% MDEA+5% AMP | DT02-5 |
参数 | DT01-5 | DT02-3 |
---|---|---|
烟气流量/(m3/h) | 2 500 | 2 890 |
洗涤塔入口烟气CO2体积分数/% | 4.42 | 4.45 |
洗涤塔入口烟气温度/℃ | <110.0 | <110.0 |
洗涤塔入口烟气压力/kPa | 3.0~5.0 | 3.0~5.0 |
吸收塔入口烟气温度/℃ | 40±2 | 40±2 |
吸收塔出口烟气温度/℃ | 50±2 | 50±2 |
再沸器低压蒸汽流量/(kg/h) | 350 | 362 |
再沸器低压蒸汽压力/MPa | 0.4 | 0.4 |
再沸器低压蒸汽温度/℃ | 150 | 150 |
吸收剂质量分数/% | 30 | 30 |
吸收剂循环流量/(m3/h) | 5.0 | 4.0 |
再生塔操作压力/kPa | 10 | 10 |
再生塔底温度/℃ | 103 | 104 |
表2 高井碳捕集系统主要参数
Tab. 2 Key parameters of Gaojing carbon capture system
参数 | DT01-5 | DT02-3 |
---|---|---|
烟气流量/(m3/h) | 2 500 | 2 890 |
洗涤塔入口烟气CO2体积分数/% | 4.42 | 4.45 |
洗涤塔入口烟气温度/℃ | <110.0 | <110.0 |
洗涤塔入口烟气压力/kPa | 3.0~5.0 | 3.0~5.0 |
吸收塔入口烟气温度/℃ | 40±2 | 40±2 |
吸收塔出口烟气温度/℃ | 50±2 | 50±2 |
再沸器低压蒸汽流量/(kg/h) | 350 | 362 |
再沸器低压蒸汽压力/MPa | 0.4 | 0.4 |
再沸器低压蒸汽温度/℃ | 150 | 150 |
吸收剂质量分数/% | 30 | 30 |
吸收剂循环流量/(m3/h) | 5.0 | 4.0 |
再生塔操作压力/kPa | 10 | 10 |
再生塔底温度/℃ | 103 | 104 |
参数 | DT01-5 | DT02-3 | MEA |
---|---|---|---|
捕集率/% | 91.42 | 90.60 | 90.10 |
捕集量/(kg/h) | 185.18 | 221.10 | 218.90 |
蒸汽消耗/[kg/kg CO2)] | 1.78 | 1.61 | 2.65 |
再生热耗/[GJ/(t CO2)] | 3.65 | 3.29 | 5.44 |
电耗/[kW∙h/(t CO2)] | 88.14 | 81.97 | 97.75 |
除盐水耗/[t/(t CO2)] | 0.320 | 0.334 | 0.510 |
吸收剂消耗/[kg/(t CO2)] | 1.21 | 0.95 | 1.93 |
冷却水用量/[t/(t CO2)] | 198 | 210 | 247 |
表3 DT01-5和DT02-3吸收剂运行性能
Tab. 3 Operational performance of DT01-5 and DT02-3 absorbents
参数 | DT01-5 | DT02-3 | MEA |
---|---|---|---|
捕集率/% | 91.42 | 90.60 | 90.10 |
捕集量/(kg/h) | 185.18 | 221.10 | 218.90 |
蒸汽消耗/[kg/kg CO2)] | 1.78 | 1.61 | 2.65 |
再生热耗/[GJ/(t CO2)] | 3.65 | 3.29 | 5.44 |
电耗/[kW∙h/(t CO2)] | 88.14 | 81.97 | 97.75 |
除盐水耗/[t/(t CO2)] | 0.320 | 0.334 | 0.510 |
吸收剂消耗/[kg/(t CO2)] | 1.21 | 0.95 | 1.93 |
冷却水用量/[t/(t CO2)] | 198 | 210 | 247 |
项目 | 单位成本 | 运行成本/元 | ||
---|---|---|---|---|
DT01-5 | DT02-3 | MEA | ||
合计 | 327.77 | 291.52 | 442.65 | |
蒸汽 | 107.58元/t | 191.49 | 173.20 | 285.09 |
电力 | 0.604元/(kW∙h) | 53.24 | 49.51 | 59.03 |
除盐水 | 23.68元/t | 7.58 | 7.91 | 12.08 |
循环冷却水 | 0.10元/t | 19.81 | 21.01 | 24.69 |
吸收剂 | DT01-5:4.6万元/t DT02-3:4.2万元/t MEA:3.2万元/t | 55.66 | 39.9 | 61.76 |
表4 DT01-5和DT02-3运行成本
Tab. 4 Operational costs of DT01-5 and DT02-3
项目 | 单位成本 | 运行成本/元 | ||
---|---|---|---|---|
DT01-5 | DT02-3 | MEA | ||
合计 | 327.77 | 291.52 | 442.65 | |
蒸汽 | 107.58元/t | 191.49 | 173.20 | 285.09 |
电力 | 0.604元/(kW∙h) | 53.24 | 49.51 | 59.03 |
除盐水 | 23.68元/t | 7.58 | 7.91 | 12.08 |
循环冷却水 | 0.10元/t | 19.81 | 21.01 | 24.69 |
吸收剂 | DT01-5:4.6万元/t DT02-3:4.2万元/t MEA:3.2万元/t | 55.66 | 39.9 | 61.76 |
1 | 许洪华,邵桂萍,鄂春良,等 .我国未来能源系统及能源转型现实路径研究[J].发电技术,2023,44(4):484-491. doi:10.12096/j.2096-4528.pgt.23002 |
XU H H, SHAO G P, E C L,et al .Research on China’s future energy system and the realistic path of energy transformation[J].Power Generation Technology,2023,44(4):484-491. doi:10.12096/j.2096-4528.pgt.23002 | |
2 | 冯伟忠,李励 .“双碳” 目标下煤电机组低碳、零碳和负碳化转型发展路径研究与实践[J].发电技术,2022,43(3):452-461. |
FENG W Z, LI L .Research and practice on development path of low-carbon,zero-carbon and negative carbon transformation of coal-fired power units under “double carbon” targets[J].Power Generation Technology,2022,43(3):452-461. | |
3 | 魏震波,杨超,李银江 .参与多元耦合市场的电-气综合能源系统低碳经济调度[J].智慧电力,2023,51(5):8-14. |
WEI Z B, YANG C, LI Y J .Low-carbon economic dispatch of electricity-gas integrated energy systems participating in multiple markets[J].Smart Power,2023,51(5):8-14. | |
4 | 景强,杨澄宇,宋建珂,等 .中国燃煤电厂二氧化碳捕集研究进展[J].电力科技与环保,2025,41(1):77-85. |
JING Q, YANG C Y, SONG J K,et al .Review on carbon dioxide capture of coal-fired power plants in China[J].Electric Power Technology and Environmental Protection,2025,41(1):77-85. | |
5 | 钟依庐,刘为雄,郑赟,等 .风火储氢碳多能耦合打捆送出模式研究[J].南方能源建设,2023,10(4):122-130. |
ZHONG Y L, LIU W X, ZHENG Y,et al .Electricity transmission strategy research based on wind-coal-battery-hydrogen-CCUS multi energy coupling and bundling system[J].Southern Energy Construction,2023,10(4):122-130. | |
6 | 王金意,牛红伟,刘练波,等 .燃煤电厂烟气新型CO2吸收剂开发与工程应用[J].热力发电,2021,50(1):54-61. |
WANG J Y, NIU H W, LIU L B,et al .Development and engineering application of new absorption solvent for CO2 capture from flue gas of coal-fired power plant[J].Thermal Power Generation,2021,50(1):54-61. | |
7 | 刘珍珍,方梦祥,夏芝香,等 .基于高浓度MEA的CO2化学吸收工艺优化[J].中国电机工程学报,2021,41(11):3666-3676. |
LIU Z Z, FANG M X, XIA Z X,et al .Optimization of CO2 chemical absorption process based on high concentration MEA[J].Proceedings of the CSEE,2021,41(11):3666-3676. | |
8 | 袁鑫,刘骏,陈衡,等 .碳捕集技术应用对燃煤机组调峰能力的影响[J].发电技术,2024,45(3):373-381. |
YUAN X, LIU J, CHEN H,et al .Effect of carbon capture technology application on peak shaving capacity of coal-fired units[J].Power Generation Technology,2024,45(3):373-381. | |
9 | 张蕾,邢大勇,芦玉铎,等 .新型吸收剂捕集燃气电厂烟气中二氧化碳的中试研究[J].分布式能源,2023,8(4):55-62. |
ZHANG L, XING D Y, LU Y D,et al .Pilot study on a new absorbent captures carbon dioxide in flue gas of gas-fired power plant[J].Distributed Energy,2023,8(4):55-62. | |
10 | CHEN P C, CHO H H, JHUANG J H,et al .Selection of mixed amines in the CO2 capture process[J].C‑Journal of Carbon Research,2021,7(1):25. doi:10.3390/c7010025 |
11 | LIU F, FANG M, YI N,et al .Biphasic behaviors and regeneration energy of a 2-(diethylamino)-ethanol and 2-((2-aminoethyl)amino) ethanol blend for CO2 capture[J].Sustainable Energy & Fuels,2019,3(12):3594-3602. doi:10.1039/c9se00821g |
12 | 林海周,罗海中,裴爱国,等 .燃煤电厂烟气MDEA/PZ混合胺法碳捕集工艺模拟分析[J].化工进展,2019,38(4):2046-2055. |
LIN H Z, LUO H Z, PEI A G,et al .Simulation and analysis of carbon dioxide capture process using MDEA/PZ blend solution in a coal-fired power plant[J].Chemical Industry and Engineering Progress,2019,38(4):2046-2055. | |
13 | BUI M, GUNAWAN I, VERHEYEN V,et al .Flexible operation of CSIRO’s post-combustion CO2 capture pilot plant at the AGL Loy Yang power station[J].International Journal of Greenhouse Gas Control,2016,48:188-203. doi:10.1016/j.ijggc.2015.12.016 |
14 | 胡道成,王睿,赵瑞,等 .二氧化碳捕集技术及适用场景分析[J].发电技术,2023,44(4):502-513. doi:10.12096/j.2096-4528.pgt.22056 |
HU D C, WANG R, ZHAO R,et al .Research on carbon dioxide capture technology and suitable scenarios[J].Power Generation Technology,2023,44(4):502-513. doi:10.12096/j.2096-4528.pgt.22056 | |
15 | PEETERS A N M, FAAIJ A P C, TURKENBURG W C .Techno-economic analysis of natural gas combined cycles with post-combustion CO2 absorption,including a detailed evaluation of the development potential[J].International Journal of Greenhouse Gas Control,2007,1(4):396-417. doi:10.1016/s1750-5836(07)00068-0 |
16 | SIPÖCZ N, TOBIESEN F A .Natural gas combined cycle power plants with CO2 capture-Opportunities to reduce cost[J].International Journal of Greenhouse Gas Control,2012,7:98-106. doi:10.1016/j.ijggc.2012.01.003 |
17 | 张治忠,陈继平,谭学谦,等 .天然气联合循环电厂燃烧后CO2捕集一体化技术经济评价[J].南方能源建设,2023,10(2):55-61. doi:10.16516/j.gedi.issn2095-8676.2023.02.008 |
ZHANG Z Z, CHEN J P, TAN X Q,et al .Economic evaluation of post-combustion CO2 capture integration technology in natural gas combined cycle power plant[J].Southern Energy Construction,2023,10(2):55-61. doi:10.16516/j.gedi.issn2095-8676.2023.02.008 | |
18 | 王旭,杨昊,王满仓,等 .燃气电厂化学吸收二氧化碳捕获系统运行参数与能耗分析[J].分布式能源,2023,8(5):69-76. |
WANG X, YANG H, WANG M C,et al .Analysis of operating parameters and energy consumption of chemical absorption carbon dioxide capture system in natural gas power plants[J].Distributed Energy,2023,8(5):69-76. | |
19 | 黄忠源 .天然气-蒸汽联合循环电厂CO2捕获及系统集成研究[D].北京:北京交通大学,2018. doi:10.3390/en11113055 |
HUANG Z Y .Study on CO2 capture of nature gas combined cycle power plant and system integration[D].Beijing:Beijing Jiaotong University,2018. doi:10.3390/en11113055 | |
20 | DU Y, LI L, NAMJOSHI O,et al. Aqueous piperazine/N-(2-aminoethyl) piperazine for CO2 capture[J].Energy Procedia,2013,37:1621-1638. doi:10.1016/j.egypro.2013.06.038 |
21 | XU Z, WANG S, CHEN C .CO2 absorption by biphasic solvents:mixtures of 1,4-butanediamine and 2-(diethylamino)-ethanol[J].International Journal of Greenhouse Gas Control,2013,16:107-115. doi:10.1016/j.ijggc.2013.03.013 |
22 | XU Z, WANG S, CHEN C .Kinetics study on CO2 absorption with aqueous solutions of 1,4-butanediamine,2-(diethylamino)-ethanol,and their mixtures[J].Industrial & Engineering Chemistry Research,2013,52(29):9790-9802. doi:10.1021/ie4012936 |
23 | CROOKS J E, DONNELLAN J P .Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution[J].Journal of the Chemical Society,Perkin Transactions 2,1989(4):331. doi:10.1039/p29890000331 |
24 | LI J, HENNI A, TONTIWACHWUTHIKUL P .Reaction kinetics of CO2 in aqueous ethylenediamine,ethyl ethanolamine,and diethyl monoethanolamine solutions in the temperature range of 298-313 K,using the stopped-flow technique[J].Industrial & Engineering Chemistry Research,2007,46(13):4426-4434. doi:10.1021/ie0614982 |
25 | SAHA A K, BANDYOPADHYAY S S, BISWAS A K .Kinetics of absorption of CO2 into aqueous solutions of 2-amino-2-methyl-1-propanol[J].Chemical Engineering Science,1995,50(22):3587-3598. doi:10.1016/0009-2509(95)00187-a |
26 | KNIPE J M, CHAVEZ K P, HORNBOSTEL K M,et al .Evaluating the performance of micro-encapsulated CO2 sorbents during CO2 absorption and regeneration cycling[J].Environmental Science & Technology,2019,53(5):2926-2936. doi:10.1021/acs.est.8b06442 |
27 | NWAOHA C, IDEM R, SUPAP T,et al .Heat duty,heat of absorption,sensible heat and heat of vaporization of 2-amino-2-methyl-1-propanol (AMP),piperazine (PZ) and monoethanolamine (MEA) tri-solvent blend for carbon dioxide (CO2) capture[J].Chemical Engineering Science,2017,170:26-35. doi:10.1016/j.ces.2017.03.025 |
28 | ARTANTO Y, JANSEN J, PEARSON P,et al .Pilot-scale evaluation of AMP/PZ to capture CO2 from flue gas of an Australian brown coal-fired power station[J].International Journal of Greenhouse Gas Control,2014,20:189-195. doi:10.1016/j.ijggc.2013.11.002 |
29 | CLOSMANN F, NGUYEN T, ROCHELLE G T .MDEA/Piperazine as a solvent for CO2 capture[J].Energy Procedia,2009,1(1):1351-1357. doi:10.1016/j.egypro.2009.01.177 |
30 | NWAOHA C, SAIWAN C, TONTIWACHWUTHIKUL P,et al .Carbon dioxide (CO2) capture:absorption-desorption capabilities of 2-amino-2-methyl-1-propanol (AMP),piperazine (PZ) and monoethanolamine (MEA) tri-solvent blends[J].Journal of Natural Gas Science and Engineering,2016,33:742-750. doi:10.1016/j.jngse.2016.06.002 |
31 | SUTAR P N, VAIDYA P D, KENIG E Y .Activated DEEA solutions for CO2 capture:a study of equilibrium and kinetic characteristics[J].Chemical Engineering Science,2013,100:234-241. doi:10.1016/j.ces.2012.11.038 |
32 | ZHANG R, LIANG Z, LIU H,et al .Study of formation of bicarbonate ions in CO2-loaded aqueous single 1DMA2P and MDEA tertiary amines and blended MEA-1DMA2P and MEA-MDEA amines for low heat of regeneration[J].Industrial & Engineering Chemistry Research,2016,55(12):3710-3717. doi:10.1021/acs.iecr.5b03097 |
33 | KIERZKOWSKA-PAWLAK H .Kinetics of CO2 absorption in aqueous N,N-diethylethanolamine and its blend with N-(2-aminoethyl)ethanolamine using a stirred cell reactor[J].International Journal of Greenhouse Gas Control,2015,37:76-84. doi:10.1016/j.ijggc.2015.03.002 |
34 | GAO H, RONGWONG W, PENG C,et al .Thermal and oxidative degradation of aqueous N,N-diethylethanolamine (DEEA) at stripping conditions for CO2 capture[J].Energy Procedia,2014,63:1911-1918. doi:10.1016/j.egypro.2014.11.200 |
35 | BAYATI B, MIRSHEKARI M, VEISY A,et al .Removal of HSS from industrial amine solution by anionic resin (case study:ilam gas refinery)[J]. Chemical Papers, 2019,73:491-500. doi:10.1007/s11696-018-0598-0 |
[1] | 胡昔鸣, 董文峰, 王争荣, 孙路长, 王凯亮, 李超, 方梦祥, 李治甫. 二氧化碳捕集塔内熔融共混亲水改性聚丙烯规整填料性能研究[J]. 发电技术, 2025, 46(2): 296-303. |
[2] | 赵海宝, 何毓忠, 刘含笑, 梁江. 燃煤电厂电除尘脉冲电源改进及工程应用[J]. 发电技术, 2025, 46(1): 154-160. |
[3] | 孙宇航, 李超, 王争荣, 孙路长, 王凯亮, 胡昔鸣, 方梦祥, 张锋. 甲基二乙醇胺-二元胺混合体系烟气CO2吸收再生性能研究[J]. 发电技术, 2024, 45(3): 468-477. |
[4] | 刘含笑. 双碳背景下电除尘器的节能减碳分析[J]. 发电技术, 2023, 44(5): 738-744. |
[5] | 汪丽, 张欢, 叶舣, 赵兴雷. N-氨乙基哌嗪与甘氨酸钠CO2吸收剂配方研究[J]. 发电技术, 2023, 44(5): 674-684. |
[6] | 张欢, 汪丽, 叶舣, 赵兴雷. 乙二烯三胺与三乙醇胺混合胺溶液CO2吸收剂研究[J]. 发电技术, 2022, 43(4): 609-617. |
[7] | 李小端, 赵兴雷, 叶舣, 王保登, 熊日华. 基于电渗析技术的CO2吸收剂再生过程研究[J]. 发电技术, 2022, 43(4): 593-599. |
[8] | 叶航, 郝宁, 刘琦. CO2咸水层封存关键参数及其实验表征技术研究进展[J]. 发电技术, 2022, 43(4): 562-573. |
[9] | 李振山, 陈虎, 李维成, 刘磊, 蔡宁生. 化学链燃烧中试系统的研究进展与展望[J]. 发电技术, 2022, 43(4): 544-561. |
[10] | 王焕君, 刘牛, 郑棹方, 邢侠, 郜时旺, 刘练波, 牛红伟, 郭东方. 直接空气捕碳材料研究进展[J]. 发电技术, 2022, 43(4): 533-543. |
[11] | 董瑞, 高林, 何松, 杨东泰. CCUS技术对我国电力行业低碳转型的意义与挑战[J]. 发电技术, 2022, 43(4): 523-532. |
[12] | 王琳琳,陈长征,周勃,孙宇梦,康爽,杜金尧. 风力机叶片复合材料裂尖温度场及微观损伤研究[J]. 发电技术, 2019, 40(6): 605-610. |
[13] | 秦大川, 李炜. 某330MW机组循环水泵优化及应用研究[J]. 发电技术, 2017, 38(6): 34-37. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||