发电技术

• •    下一篇

基于Transformer与多模态异构特征融合的水轮机组故障诊断方法

方贤思1,吕顺利2*,何宇平1,尤万方3,闵万雄1,刘佳佳1,李俊松1,马成伟3   

  1. 1.贵州乌江水电开发有限责任公司构皮滩发电厂,贵州省 余庆县 564408;2.昆明理工大学冶金与能源工程学院,云南省 昆明市 650093;3.南京南瑞水利水电科技有限公司,江苏省 南京市 211106
  • 基金资助:
    国家自然科学基金项目(52079059)。

Fault Diagnosis Method for Hydroturbine Units Based on Transformer and Multimodal Heterogeneous Feature Fusion

FANG Xiansi1, Lü Shunli2*, HE Yuping1, YOU Wanfang3, MIN Wanxiong1, LIU Jiajia1, LI Junsong1, MA Chengwei3   

  1. 1.Goupitan Power Plant, Guizhou Wujiang Hydropower Development Co., Ltd., Yuqing 564408, Guizhou Province, China; 2.School of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan Province,China; 3. Nanjing Nanrui Water Conservancy and Hydropower Technology Co., Ltd., Nanjing 211106, Jiangsu Province, China
  • Supported by:
    Project Supported by National Natural Science Foundation of China(52079059).

摘要: 【目的】水轮机组运行中可能产生具有非线性、多尺度特性的振动异常等多模态故障信号。传统时序模型难以捕捉长程依赖关系,单模态分析方法无法有效整合异构数据特征。针对上述问题,提出Transformer-格拉姆角场(Gramian Angular Summation Fields,GASF)-递归图(Recurrence Plot,RP)-二维(two-dimensional,2D)-循环神经网络(Gate Recurrent Unit,GRU)的多模态异构图混合特征提取模型,旨在提升故障诊断的可靠性与泛化能力。【方法】首先将水轮机组的时间序列数据转换为2D图像,利用GASF和RP方法提取时序数据的空间特征,构建Transformer模型,同时采用GRU捕捉动态时序特征,并且通过多模态特征融合,将时序特征、图像空间特征以及异构图像特征结合,从而显著提升故障识别的准确性和鲁棒性。【结果】所提方法在水轮机组故障诊断任务中表现出更高的准确率和更强的泛化能力,且在多个测试集上的诊断准确率均达到100%。【结论】所提方法可有效融合时序数据与图像特征,显著增强模型对非线性故障模式的识别能力,并且能够准确捕捉设备的异常状态。

关键词: 水轮机, 故障诊断, Transformer, 优化算法, 循环神经网络(GRU), 特征提取, 格拉姆角场(GASF), 递归图(RP), 二维图像

Abstract: [Objectives] The multi-mode fault signals such as vibration anomalies with nonlinear and multi-scale characteristics may be generated during the operation of turbine units. It is difficult for traditional time series models to capture long range dependencies, and the single modal analysis method cannot integrate heterogeneous data features effectively. In response to the above issues, this paper proposes a multimodal heterogeneous graph hybrid feature extraction model consisting of Transformer Gram Angular Summation Fields (GASF) - Recurrent Plot (RP) - Two dimensional (2D) - Gate Recurrent Unit (GRU), aiming to improve the reliability and generalization ability of fault diagnosis. [Methods]Firstly, the time series data of hydroturbine units are converted into 2D images, GASF and RP methods are used to extract spatial features of time series data, and Transformer model is constructed. Meanwhile, GRU is used to capture dynamic time series features, and multi-modal feature fusion is used to combine temporal features, image spatial features and heterogeneous image features. Thus, the accuracy and robustness of fault identification are significantly improved. [Results]The proposed method shows higher accuracy and stronger generalization ability in the fault diagnosis task of hydraulic turbine, and the diagnosis accuracy reaches 100% on multiple test sets. [Conclusions]The method can effectively fuse time series data and image features, significantly enhance the model's ability to recognize nonlinear fault modes, and accurately capture the abnormal state of the device. 

Key words: water turbine, fault diagnosis, Transformer, optimization algorithm, gate recurrent unit, feature extraction, gram angular summation fields, recurrent plot, 2D image