发电技术 ›› 2025, Vol. 46 ›› Issue (4): 694-704.DOI: 10.12096/j.2096-4528.pgt.25089

• 新型电力系统 • 上一篇    下一篇

极端高温天气下电力系统韧性提升策略

袁家海1, 张凯1, 张健1, 夏文杰1, 周焕庆1, 张浩楠2   

  1. 1.华北电力大学经济与管理学院,北京市 昌平区 102206
    2.华北电力大学(保定)经济管理系,河北省 保定市 071003
  • 收稿日期:2025-02-20 修回日期:2025-05-23 出版日期:2025-08-31 发布日期:2025-08-21
  • 通讯作者: 张浩楠
  • 作者简介:袁家海(1979),男,博士,教授,研究方向为能源系统低碳转型与决策,yuanjh126@126.com
    张凯(1994),男,博士研究生,研究方向为电力规划与系统运行模拟,18601202566@163.com
    张浩楠(1992),男,博士,讲师,研究方向为电力转型与电力规划,本文通信作者,zhanghn2022@ncepu.edu.cn
  • 基金资助:
    国家自然科学基金项目(72173043);国家自然科学基金项目(72303064);国家自然科学基金项目(72403087)

Resilience Enhancement Strategies for Power Systems Under Extreme High-Temperature Weather

Jiahai YUAN1, Kai ZHANG1, Jian ZHANG1, Wenjie XIA1, Huanqing ZHOU1, Haonan ZHANG2   

  1. 1.School of Economics and Management, North China Electric Power University, Changping District, Beijing 102206, China
    2.Department of Economics and Management, North China Electric Power University (Baoding), Baoding 071003, Hebei Province, China
  • Received:2025-02-20 Revised:2025-05-23 Published:2025-08-31 Online:2025-08-21
  • Contact: Haonan ZHANG
  • Supported by:
    National Natural Science Foundation of China(72173043)

摘要:

目的 为应对极端高温天气对电力系统供需平衡造成的冲击,提出一种面向中长期的电力系统韧性提升方法。 方法 首先,模拟持续性极端高温场景下“源-荷”耦合出力特性,并利用时序运行模拟模型对系统韧性表现进行初评估;其次,基于运行模拟结果,在电力供需平衡的基础上以供电成本与负荷削减成本之和最小为目标,建立面向韧性提升的电力资源规划模型,得到韧性提升组合措施;最后,对韧性提升策略场景进行运行模拟,以验证其有效性。 结果 以2025年广东省为案例场景,与未实施电力系统韧性提升策略的场景相比,实施策略后极端高温天气下系统累积缺供电量、最大失负荷规模和因电力短缺而造成的经济损失分别降低了86.71%、60.72%和91.55%,系统最小供电水平提升了11.07%。 结论 通过协同供电资源扩容与负荷资源部署,电力系统韧性提升策略有效地提升了极端高温天气下系统的供电能力,同时降低了因电力短缺而造成的经济损失和社会代价。

关键词: 极端高温天气, 电力系统韧性, “源-荷”出力模拟, 时序运行模拟, 电力资源规划, 负荷分级削减, 失负荷价值, 韧性提升策略

Abstract:

Objectives To address the impact of extreme high-temperature weather on the supply and demand balance of power systems, a medium- to long-term method for enhancing power system resilience is proposed. Methods First, the coupled “source-load” output characteristics under sustained extreme high-temperature scenarios are simulated, and an initial evaluation of system resilience is performed using a chronological operation simulation model. Second, based on the operation simulation results, a resilience enhancement-oriented power resource planning model is established, with the objective of minimizing the combined cost of power supply and load shedding under the constraint of supply and demand balance, thereby deriving combined measures for resilience enhancement. Finally, operation simulations of the resilience enhancement strategy scenarios are conducted to verify their effectiveness. Results Taking Guangdong Province in 2025 as a case study, compared with the scenario without the implementation of the resilience enhancement strategies for power systems, the application of such strategies under extreme high-temperature weather decreases the cumulative power shortage, maximum lost load scale, and economic losses caused by power shortage by 86.71%, 60.72%, and 91.55%, respectively. The system’s minimum power supply level increases by 11.07%. Conclusions By coordinating the expansion of power supply resources and deployment of load resources, the resilience enhancement strategies effectively improve the power system’s supply capacity under extreme high-temperature weather, while reducing the economic loss and social cost caused by power shortages.

Key words: extreme high-temperature weather, power system resilience, source-load output simulation, chronological operation simulation, power resource planning, hierarchical load shedding, value of lost load, resilience enhancement strategy

中图分类号: