发电技术 ›› 2021, Vol. 42 ›› Issue (3): 306-312.DOI: 10.12096/j.2096-4528.pgt.20012
张磊1(), 李继影2, 李钦伟3, 张敏策4, 郭云丰5, 张立栋5,*(
)
收稿日期:
2020-08-03
出版日期:
2021-06-30
发布日期:
2021-06-29
通讯作者:
张立栋
作者简介:
张磊(1982), 男, 硕士, 高级工程师, 主要研究方向为风力发电设备安全管理、机组运行评估、数据分析, zhangleiwto123@163.com基金资助:
Lei ZHANG1(), Jiying LI2, Qinwei LI3, Mince ZHANG4, Yunfeng GUO5, Lidong ZHANG5,*(
)
Received:
2020-08-03
Published:
2021-06-30
Online:
2021-06-29
Contact:
Lidong ZHANG
Supported by:
摘要:
在风力机运行过程中,由于风向具有随机性及波动性,风力机偏航系统需要完成对风控制,频繁偏航将导致风力发电机组故障。综述了风力机偏航控制现状及策略,通过对偏航执行策略和重启策略的分别评述,可知大多偏航执行策略的研究仍是在仿真工具上实现,风向预测在执行偏航策略中有更多的体现。偏航重启策略开展研究较少,主要是对风速及风向的阈值进行修正,优化偏航重启的阈值以达到减少偏航次数的目的。偏航控制策略可以减少单机故障发生概率,同时增加风电场功率,提高全场综合经济效益。
中图分类号:
张磊, 李继影, 李钦伟, 张敏策, 郭云丰, 张立栋. 风力机偏航系统控制策略研究现状及进展[J]. 发电技术, 2021, 42(3): 306-312.
Lei ZHANG, Jiying LI, Qinwei LI, Mince ZHANG, Yunfeng GUO, Lidong ZHANG. Status and Prospect of Yaw System Control Strategy for Wind Turbines[J]. Power Generation Technology, 2021, 42(3): 306-312.
目标 | 算法 | 仿真工具 |
寻找最大发电功率确定 风力机最佳偏航[ | 基于功率检测的 爬山算法 | MATLAB |
风机发电效率最大[ | 优化卡尔曼滤波 结合爬山算法 | MATLAB |
偏航系统稳定性[ | 模糊控制算法 | MATLAB |
偏航系统稳定性和控制精度[ | 粒子群算法 | MATLAB |
基于风向预测[ 功率最大化[ | 混合自回归积分移动 平均法结合卡尔曼 滤波[ | MATLAB |
偏航误差[ | 神经网络及随机森林 | — |
提高对风精度[ | 聚类结合风向预测 | — |
降低偏航频次,提高 对风精度,提升发电量[ | 基于卡尔曼滤波的 自适应偏航控制策略 | MATLAB |
提高发电量[ | 细菌群体趋药性算法 | MATLAB+ BLADED |
表1 风力机偏航执行策略控制仿真算法
Tab. 1 Simulation algorithms of yaw execution strategy control of wind turbine
目标 | 算法 | 仿真工具 |
寻找最大发电功率确定 风力机最佳偏航[ | 基于功率检测的 爬山算法 | MATLAB |
风机发电效率最大[ | 优化卡尔曼滤波 结合爬山算法 | MATLAB |
偏航系统稳定性[ | 模糊控制算法 | MATLAB |
偏航系统稳定性和控制精度[ | 粒子群算法 | MATLAB |
基于风向预测[ 功率最大化[ | 混合自回归积分移动 平均法结合卡尔曼 滤波[ | MATLAB |
偏航误差[ | 神经网络及随机森林 | — |
提高对风精度[ | 聚类结合风向预测 | — |
降低偏航频次,提高 对风精度,提升发电量[ | 基于卡尔曼滤波的 自适应偏航控制策略 | MATLAB |
提高发电量[ | 细菌群体趋药性算法 | MATLAB+ BLADED |
1 |
LIU F , SUN F , LIU W , et al. On wind speed pattern and energy potential in China[J]. Applied Energy, 2019, 236, 867- 876.
DOI |
2 | 刘志超, 王洪彬, 沙浩, 等. 我国风电利用技术现状及其前景分析[J]. 发电技术, 2019, 40 (4): 389- 395. |
LIU Z C , WANG H B , SHA H , et al. Status and prospect analysis of wind power utilization technology in China[J]. Power Generation Technology, 2019, 40 (4): 389- 395. | |
3 | 薛禹胜, 雷兴, 薛峰, 等. 关于风电不确定性对电力系统影响的评述[J]. 中国电机工程学报, 2014, 34 (29): 5029- 5040. |
XUE Y S , LEI X , XUE F , et al. A review on impacts of wind power uncertainties on power systems[J]. Proceedings of the CSEE, 2014, 34 (29): 5029- 5040. | |
4 |
王君亮, 李君. 风光并网对河南电网系统稳态影响[J]. 电网与清洁能源, 2019, 35 (9): 81- 87.
DOI |
WANG J L , LI J . Effect of integration of wind and photovoltaic power on Henan power grid steady-state[J]. Power System and Clean Energy, 2019, 35 (9): 81- 87.
DOI |
|
5 |
裘昕月, 朱自伟, 黄春辉, 等. 考虑风电出力不确定性的综合能源系统鲁棒优化[J]. 智慧电力, 2020, 48 (5): 1- 6.
DOI |
QIU X Y , ZHU Z W , HUANG C H , et al. Robust optimization of integrated energy system considering uncertainty of wind power output[J]. Smart Power,, 2020, 48 (5): 1- 6.
DOI |
|
6 | 成立峰. 风力发电机组偏航系统误差与控制策略研究[D]. 北京: 华北电力大学, 2017. |
CHENG L F. Study on yaw system error and control strategy of wind turbine[D]. Beijing: North China Electric Power University, 2017. | |
7 |
潘旭东, 黄豫, 唐金锐, 等. 新能源发电发展的影响因素分析及前景展望[J]. 智慧电力, 2019, 47 (11): 41- 47.
DOI |
PAN X D , HUANG Y , TANG J R , et al. Influencing factors and prospects for development of renewable energy power generation[J]. Smart Power, 2019, 47 (11): 41- 47.
DOI |
|
8 |
邓争, 刘国荣, 张真源, 等. 基于虚拟同步机的双馈风电机组自适应控制[J]. 电网与清洁能源, 2020, 36 (8): 73- 81.
DOI |
DENG Z , LIU G R , ZHANG Z Y , et al. Adaptive control of doubly-fed wind turbines based on virtual synchronizer[J]. Power System and Clean Energy, 2020, 36 (8): 73- 81.
DOI |
|
9 | 程雪婷, 张家瑞, 刘新元, 等. 考虑风机排序的风电集群分层有功控制策略[J]. 电力工程技术, 2021, 40 (2): 26- 32. |
CHENG X T , ZHANG J R , LIU X Y , et al. Hierarchical active control of wind power cluster considering ordered wind turbines[J]. Electric Power Engineering Technology, 2021, 40 (2): 26- 32. | |
10 | 李辉, 胡姚刚, 李洋, 等. 大功率并网风电机组状态监测与故障诊断研究综述[J]. 电力自动化设备, 2016, 36 (1): 6- 16. |
LI H , HU Y G , LI Y , et al. Overview of condition monitoring and fault diagnosis for grid-connected high-power wind turbine unit[J]. Electric Power Automation Equipment, 2016, 36 (1): 6- 16. | |
11 | 柴海棣, 赵晓艳, 史波. 基于能量传递模型的永磁直驱变桨变速风电机组功率特性测试方法[J]. 发电技术, 2019, 40 (4): 396- 402. |
CHAI H D , ZHAO X Y , SHI B . Power performance characteristics measurement method of PMSG-based wind turbines with energy transmitted model[J]. Power Generation Technology, 2019, 40 (4): 396- 402. | |
12 | 孙立雄. 基于SCADA数据的风电机组电控系统故障诊断研究[D]. 天津: 河北工业大学, 2014. |
SUN L X. Study on fault diagnosis of wind turbine electronic control System based on SCADA data[D]. Tianjin: Hebei University of Technology, 2014. | |
13 |
陈思, 郭鹏. 基于综合经济效益目标的风电机组偏航控制策略研究[J]. 动力工程学报, 2019, 39 (4): 286- 292.
DOI |
CHEN S , GUO P . Study on yaw control strategy for wind turbines based on the target of comprehensive economic efficiency[J]. Journal of Chinese Society of Power Engineering, 2019, 39 (4): 286- 292.
DOI |
|
14 | 路宏. 基于风向预测的风电机组偏航控制方法研究[D]. 北京: 华北电力大学, 2019. |
LU H. Research on yaw control method of wind turbine based on wind direction prediction[D]. Beijing: North China Electric Power University, 2019. | |
15 | 刘航. 基于激光雷达的偏航控制技术研究[D]. 杭州: 浙江大学, 2019. |
LIU H. Research on yaw control technology based on lidar[D]. Hangzhou: Zhejiang University, 2019. | |
16 | 沈小军, 杜万里. 大型风力发电机组偏航系统控制策略研究现状及展望[J]. 电工技术学报, 2015, 30 (5): 196- 203. |
SHEN X J , DU W L . Expectation and review of control strategy of large wind turbines yaw system[J]. Transactions of China Electrotechnical Society, 2015, 30 (5): 196- 203. | |
17 | 邹强, 刘波峰, 彭镭, 等. 爬山算法在风力发电机组偏航控制系统中的应用[J]. 电网技术, 2010, 34 (5): 72- 76. |
ZOU Q , LIU B F , PENG L , et al. Application of hill-climbing control algorithm in yaw control system for wind power generation sets[J]. Power System Technology, 2010, 34 (5): 72- 76. | |
18 |
朴海国, 王志新. 风电机组偏航控制系统的新型算法: V-HC研究[J]. 太阳能学报, 2008, 29 (8): 1028- 1033.
DOI |
PIAO H G , WANG Z X . A new control algorithm for yaw control system of wind turbine[J]. Acta Energiae Solaris Sinica, 2008, 29 (8): 1028- 1033.
DOI |
|
19 |
顾露香, 乐秀墦, 杨虞琨, 等. KHC算法在风力发电机组偏航系统的运用[J]. 华电技术, 2011, 33 (9): 92- 94.
DOI |
GU L X , LE X F , YANG Y K , et al. Application of KHC algorithm in yaw system of wind turbine[J]. Huandian Technology, 2011, 33 (9): 92- 94.
DOI |
|
20 | 刘超, 王世荣. 基于KHC算法的风力发电机组偏航控制系统[J]. 电子技术与软件工程, 2017, (15): 237- 237. |
LIU C , WAGN S R . The yaw control system of wind turbine based on KHC algorithm[J]. Electronic Technology & Software Engineering, 2017, (15): 237- 237. | |
21 |
朴海国, 王志新. 基于CPSO的PID神经网络及偏航电机控制策略[J]. 电机与控制学报, 2010, 14 (9): 55- 62.
DOI |
PIAO H G , WANG Z X . Control strategy of CPSO-based PID neural network and a yaw motor[J]. Electric Machines and Control, 2010, 14 (9): 55- 62.
DOI |
|
22 |
宋建军, 张扬, 张长安, 等. 基于模糊控制的风力发电机组偏航系统研究[J]. 电网与清洁能源, 2011, 27 (7): 78- 81.
DOI |
SONG J J , ZHANG Y , ZHANG C A , et al. Research on the yaw system of wind turbines based on fuzzy control[J]. Power System and Clean Energy, 2011, 27 (7): 78- 81.
DOI |
|
23 |
杨茂, 杨春霖. 考虑风向的风电功率预测不确定性研究[J]. 东北电力大学学报, 2018, 38 (5): 9- 15.
DOI |
YANG M , YANG C L . Uncertainty research of wind power prediction considering wind direction[J]. Journal of Northeast Electric Power University, 2018, 38 (5): 9- 15.
DOI |
|
24 | 唐振浩, 赵赓楠, 曹生现, 等. 基于SWLSTM算法的超短期风向预测[J]. 中国电机工程学报, 2019, 39 (15): 4459- 4467. |
TANG Z H , ZHAO G N , CAO S X , et al. Very short-term wind direction prediction via self-tuning wavelet long-short term memory neural network[J]. Proceedings of the CSEE, 2019, 39 (15): 4459- 4467. | |
25 | SONG D , YANG J , YAO L , et al. Wind direction prediction for yaw control of wind turbines[J]. International Journal of Control Automation & Systems, 2017, 15 (4): 1720- 1728. |
26 |
SONG D , YANG J , FAN X , et al. Maximum power extraction for wind turbines through a novel yaw control solution using predicted wind directions[J]. Energy Conversion and Management, 2018, 157, 587- 599.
DOI |
27 |
WAN S , CHENG L , SHENG X . Effects of yaw error on wind turbine running characteristics based on the equivalent wind speed model[J]. Energies, 2015, 8 (7): 6286- 6301.
DOI |
28 | OUYANG T , KUSIAK A , HE Y . Predictive model of yaw error in a wind turbine[J]. Energy, 2017, 123 (15): 119- 130. |
29 |
许炳坤. 基于聚类算法和风向预测的风机偏航控制优化策略[J]. 国网技术学院学报, 2017, 20 (1): 50- 54.
DOI |
XU B K . Fan yaw control optimization strategy based on clustering algorithm and wind direction prediction[J]. Journal of State Grid Technology College, 2017, 20 (1): 50- 54.
DOI |
|
30 | CASTELLANI F , SDRINGOLA P , ASTOLFI D . Analysis of wind turbine wakes through time-resolved and SCADA data of an onshore wind farm[J]. Journal of Solar Energy Engineering, 2018, 140 (4): 485- 501. |
31 |
MITTELMEIER N , KÜHN M . Determination of optimal wind turbine alignment into the wind and detection of alignment changes with SCADA data[J]. Wind Energy Science, 2018, 3, 395- 408.
DOI |
32 |
ZHANG L , LI Q , GUO Y , et al. An investigation of wind direction and speed in a featured wind farm using joint probability distribution methods[J]. Sustainability, 2018, 10, 4338.
DOI |
33 | AHMAD T , BASIT A , AHSAN M . Implementation and analyses of yaw based coordinated control of wind farms[J]. Energies, 2019, 12 (7): 15- 20. |
34 | DAR Z , KAR K , SAHNI O , et al. Wind farm power optimization using yaw angle control[J]. IEEE Transactions on Sustainable Energy, 2017, 8 (1): 983- 995. |
35 | 焦鑫, 陈为国, 张宇, 等. 风力发电机自适应偏航控制策略研究[J]. 自动化技术与应用, 2019, 38 (3): 11- 15. |
JIAO X , CHEN W G , ZHANG Y , et al. Research on adaptive yaw control strategy for wind power generator[J]. Techniques of Automation and Applications, 2019, 38 (3): 11- 15. | |
36 | 高峰, 凌新梅, 刘强. 基于SCADA数据的风电机组偏航控制参数优化[J]. 太阳能学报, 2019, 40 (6): 1739- 1746. |
GAO F , LING X M , LIU Q . Parameter optimization of yaw control for wind turbine based on SCADA data[J]. Acta Energiae Solaris Sinica, 2019, 40 (6): 1739- 1746. | |
37 | MCKAY P , CARRIVEAU R , TING D S K . Wake impacts on downstream wind turbine performance and yaw alignment[J]. Wind Energy, 2012, 16 (2): 221- 234. |
38 |
SONG D , FAN X , YANG J , et al. Power extraction efficiency optimization of horizontal-axis wind turbines through optimizing control parameters of yaw control systems using an intelligent method[J]. Applied Energy, 2018, 224, 267- 279.
DOI |
39 |
DAI C , YANG X , HU W , et al. Effect investigation of yaw on wind turbine performance based on SCADA data[J]. Energy, 2018, 149, 684- 696.
DOI |
40 |
SAENZ A A , ZULUETA E , FERNANDEZ G U , et al. Artificial neural network based reinforcement learning for wind turbine yaw control[J]. Energies, 2019, 12 (3): 436- 440.
DOI |
41 |
WEN B , TIAN X , DONG X , et al. A numerical study on the angle of attack to the blade of a horizontal-axis offshore floating wind turbine under static and dynamic yawed conditions[J]. Energy, 2019, 168, 1138- 1156.
DOI |
42 |
LIAO C , SHI K , ZHAO X . Predicting the extreme loads in power production of large wind turbines using an improved PSO algorithm[J]. Applied Sciences, 2019, 9 (3): 521.
DOI |
43 | 王欣, 吴根勇, 潘东浩, 等. 基于运行数据的风电机组偏航优化控制方法研究[J]. 可再生能源, 2016, 34 (3): 413- 420. |
WANG X , WU G Y , PAN D H , et al. Wind turbine yaw control optimization utilizing the running data[J]. Renewable Energy Resources, 2016, 34 (3): 413- 420. | |
44 |
KHEIRABADI A C , NAGAMUNE R . A quantitative review of wind farm control with the objective of wind farm power maximization[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 192, 45- 73.
DOI |
45 | 吴亚联, 郭潇潇, 苏永新, 等. 机组间偏航和有功功率综合协调的海上风电场增效方法[J]. 电力系统自动化, 2017, 41 (7): 74- 80. |
WU Y L , GUO X X , SU Y X , et al. Effective optimization method for offshore wind farm considering comprehensive coordination of yaw and active power among wind turbines[J]. Automation of Electric Power Systems, 2017, 41 (7): 74- 80. | |
46 | MAJID B , FERNANDO P . Wind farm power optimization via yaw angle control: a wind tunnel study[J]. Journal of Renewable & Sustainable Energy, 2019, 11 (2): 023301. |
47 |
KUO J , PAN K , LI N , et al. Wind farm yaw optimization via random search algorithm[J]. Energies, 2020, 13 (4): 865.
DOI |
48 | 范强, 文贤馗, 林呈辉, 等. 大数据技术在风电领域应用研究[J]. 电力大数据, 2017, 20 (9): 55- 58. |
FAN Q , WEN X K , LIN C H , et al. Application and research of big data technology in wind power field[J]. Power Systems and Big Data, 2017, 20 (9): 55- 58. | |
49 |
万德超, 孙树敏, 尹文泉. 基于运行数据的风电场并网特性评价研究[J]. 电网与清洁能源, 2019, 35 (1): 78- 83.
DOI |
WAN D C , SUN S M , YIN W Q . Research on characteristics evaluation of grid-connected wind farm based on operation data[J]. Power System and Clean Energy, 2019, 35 (1): 78- 83.
DOI |
|
50 |
MALIK H . Wavelet and Hilbert Huang transform based wind turbine imbalance fault classification model using k-nearest neighbour algorithm[J]. International Journal of Renewable Energy Technology, 2018, 9 (1/2): 66- 83.
DOI |
51 | MCKAY P M , CARRIVEAU R , TING D S K , et al. Global sensitivity analysis of wind turbine power output[J]. Wind Energy, 2014, 17 (7): 104- 116. |
52 | 高鑫. 风电机组振动数据分析与偏航校正[J]. 热能动力工程, 2019, 34 (6): 172- 177. |
GAO X . Wind turbine vibration data analysis and yaw correction[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34 (6): 172- 177. |
[1] | 秦志鹏, 魏高升, 崔柳, 杜小泽. S型翼缝与尾缘襟翼联合控制风力机翼型气动性能的研究[J]. 发电技术, 2024, 45(1): 24-31. |
[2] | 唐鑫, 钱奕然, 方华伟, 李洋, 李思广, 易经纬, 陈伟雄, 严俊杰. 超临界二氧化碳布雷顿循环控制策略研究综述[J]. 发电技术, 2023, 44(4): 492-501. |
[3] | 李建林, 丁子洋, 刘海涛, 杨夯. 构网型储能变流器及控制策略研究[J]. 发电技术, 2022, 43(5): 679-686. |
[4] | 樊昂, 李录平, 张世海, 欧阳敏南, 文贤馗, 陈尚年. 大型风电机组塔筒动力学特性与寿命损耗研究进展[J]. 发电技术, 2022, 43(3): 421-430. |
[5] | 杨舟, 杨仁炘, 施刚, 张建文. 一种用于多端直流输电系统交流故障穿越的新型控制策略[J]. 发电技术, 2022, 43(2): 268-277. |
[6] | 胡丹梅, 曾理, 陈云浩. 半潜式海上风力机流固耦合特性分析[J]. 发电技术, 2022, 43(2): 218-226. |
[7] | 李子尚, 朱仁涵, 杜振. SCR脱硝系统精准喷氨优化技术分析[J]. 发电技术, 2021, 42(5): 630-636. |
[8] | 王燕, 杨秀媛, 徐剑锋, 卜思齐, 徐智蔷. 民用可控负荷参与需求响应的控制策略[J]. 发电技术, 2020, 41(6): 638-649. |
[9] | 杨昌杏, 李录平. 风力机叶片损伤故障检测技术研究进展[J]. 发电技术, 2020, 41(6): 599-607. |
[10] | 王琳琳,陈长征,周勃,孙宇梦,康爽,杜金尧. 风力机叶片复合材料裂尖温度场及微观损伤研究[J]. 发电技术, 2019, 40(6): 605-610. |
[11] | 孙晓哲. 石油钻机光储柴供电系统运行控制策略[J]. 发电技术, 2019, 40(5): 469-474. |
[12] | 范丽霞,蔡瑞强,张欢畅,魏远,田恬,胡斌. 电压型虚拟同步发电机控制策略下的双馈风电机组阻抗及次同步振荡特性[J]. 发电技术, 2019, 40(5): 434-439. |
[13] | 王久和. 统一电能质量调节器控制策略研究[J]. 发电技术, 2018, 39(4): 313-321. |
[14] | 庄雅妮,杨秀媛,金鑫城. 风光储联合发电运行技术研究[J]. 发电技术, 2018, 39(4): 296-303. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||